Biosensors for bioengineering


The Biosensors for bioengineering group is a junior group under IBEC’s Tenure Track scheme.
Javier Ramón Azcón | Junior Group Leader
Alejandro Hernández Albors | Postdoctoral Researcher
Irene Marco Rius | Postdoctoral Researcher
Maria Alejandra Ortega Machuca | Postdoctoral Researcher
Laura Clua Ferré | PhD Student
Xiomara Gislen Fernández Garibay | PhD Student
Ferran Velasco Mallorquí | PhD Student
Francesco De Chiara | Laboratory Technician
Albert Garcia Castaño | Laboratory Technician
Joshua Kandler | Masters Student
Seongsu Eom | Visiting Researcher
Juanma Fernandez Costa | Visiting Researcher

About

Formation of 3D ESC aggregates in GelMA hydrogel using dielectrophoresis (DEP). The stem cells in the GelMA prepolymer were introduced into the 100 µm height chamber and localized by DEP forces to the low electric field regions within the microelectrodes. The GelMA prepolymer was then exposed to UV light, embedding the cells in a stable microscale organization. Scale bar shows 100 µm.

Drug discovery pathway relies heavily on in vivo animal models and in vitro cell mediums. In the case of animal models we have not only some ethical problems but also the ability to extrapolate data to human conditions is limited and in vitro platforms often do not simulate the complex cell–cell and cell–matrix interactions crucial for regulating cell behaviour.

The Biosensors for Bioengineering group is focused in a new line of research that has become of extreme importance in the last years. The idea is to integrate biosensor technology and nanotechnology with stem cell research and with tissue engineering. Engineered tissues are integrated with biosensing technology to obtain microdevices for detecting cellular responses to external stimuli, monitoring the quality of the microenvironment (e.g., metabolites, nutrients), and supporting diverse cellular requirements. This research on 3D-functional engineered tissues is expected to develop knowledge of tissue construction and their functions and relation with some human diseases. Integration of fully functional tissues with microscale biosensor technology allowed us to obtain “organs-on-a-chip”. These chips could be used in pharmaceutical assays and could be a step toward the ultimate goal of producing in vitro drug testing systems crucial to the medicine and pharmaceutical industry.

ramon2_web

Right: Picture of aligned C2C12 muscle cells within hydrogel as obtained by the dielectrophoresis (DEP) technique using 50 µm electrode 50 µm gap device (A). Phase contrast images of the aligned C2C12 muscle cells within hydrogel at different culture times (B and C). Scale bar shows 0.25 cm, 400 μm, and 50 μm in A, B, and C, respectively.

 

Myotubes differentiated in a groove-ridge topography GelMA-CNTs composite loaded with 0.3 mg/mL CNTs. Immunostaining of cell nuclei/myosin heavy chain showing the highly aligned C2C12 myotubes. Z-lines were also observed for the myotubes indicating high maturation of muscle myofibers. Scale bar show 20 µm.

Myotubes differentiated in a groove-ridge topography GelMA-CNTs composite loaded with 0.3 mg/mL CNTs. Immunostaining of cell nuclei/myosin heavy chain showing the highly aligned C2C12 myotubes. Z-lines were also observed for the myotubes indicating high maturation of muscle myofibers. Scale bar show 20 µm.

ramon4_web

News/Jobs

Five IBEC researchers awarded “la Caixa” grants at ceremony
05/11/2018

IBEC researchers were in the limelight today at the awards ceremony for the “la Caixa” fellowships and grants for research and innovation calls.


IBEC researchers take to the stage at second BIST conference
27/06/2018

Today more than 300 researchers are meeting at CosmoCaixa to debate the latest scientific advances in cutting-edge fields at the yearly conference of the Barcelona Institute of Science and Technology (BIST).


IBEC researcher presents the state-of-the-art of advanced materials for 3D bioprinting
26/06/2018

IBEC group leader Javier Ramón presented the state-of-the-art in 3D printing of biomaterials at a workshop organised by CatalunyaBio & HealthTech last week.


It’s a wrap! – IBEC’s Faster Future campaign ends with a night at the movies
03/05/2018

To round off its first Faster Future fundraising campaign, IBEC is organizing an exclusive European film première of “I’ll Push You”, the inspiring story of Justin Skeesuck and Patrick Gray, the first people to complete the Camino de Santiago in a wheelchair.


Joining forces with FEDER to collaborate on solutions for rare diseases
02/02/2018

IBEC has signed a collaboration agreement with the Federación Española de Enfermedades Raras (FEDER), a non-profit organization that represents the three million people suffering from rare diseases throughout the country.


“Un músculo en un chip”
11/12/2017

Javier Ramon’s ‘muscle-on-a-chip’ that will use a patient’s own cells to study Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy, is the subject of an article in El Periodico today.


Faster Future 2017 now open for donations
27/11/2017

The website of Faster Future, IBEC’s brand new fundraising programme, is now accepting donations.


IBEC to launch Faster Future, a new fundraising initiative, on Giving Tuesday
22/11/17

Next week IBEC will launch Faster Future, a new crowdfunding initiative that aims to help accelerate research projects that are close to tackling major challenges in health.


Finding out about diabetes approaches at IBEC’s Setmana de la Ciencia event
16/11/17

Yesterday IBEC group leader Javer Ramon presented his research on developing organ-on-a-chip to study diabetes in IBEC’s public event forming part of this year’s Setmana de la Ciència.


IBEC researcher’s ERC project highlighted in Madrid exhibition
28/03/17

This weekend Javier Ramon’s European Research Council-funded project, DAMOC, was one of eight highlighted in a special exhibition in Madrid to mark the ERC’s tenth anniversary.


ERC funding for new diabetes approach at IBEC
04/10/16

IBEC’s Dr. Javier Ramón is one of just six researchers in Catalonia to have been awarded a 2016 Starting Grant by the European Research Council (ERC).


Projects

EU-funded projects
‘Diabetes Approach by Multi-Organ-on-a-Chip’ (DAMOC) ERC Javier Ramón

Publications


García-Lizarribar, Andrea, Fernández-Garibay, Xiomara, Velasco-Mallorquí, Ferran, Castaño, Albert G., Samitier, Josep, Ramon-Azcon, Javier, (2018). Composite biomaterials as long-lasting scaffolds for 3D bioprinting of highly aligned muscle tissue Macromolecular Bioscience 18, (10), 1800167

Abstract New biocompatible materials have enabled the direct 3D printing of complex functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl (GelMA) is a photopolymerizable hydrogel composed of natural gelatin functionalized with methacrylic anhydride. However, it is difficult to obtain a single hydrogel that meets all the desirable properties for tissue engineering. In particular, GelMA hydrogels lack versatility in their mechanical properties and lasting 3D structures. In this work, a library of composite biomaterials to obtain versatile, lasting, and mechanically tunable scaffolds are presented. Two polysaccharides, alginate and carboxymethyl cellulose chemically functionalized with methacrylic anhydride, and a synthetic material, such as poly(ethylene glycol) diacrylate are combined with GelMA to obtain photopolymerizable hydrogel blends. Physical properties of the obtained composite hydrogels are screened and optimized for the growth and development of skeletal muscle fibers from C2C12 murine cells, and compared with pristine GelMA. All these composites show high resistance to degradation maintaining the 3D structure with high fidelity over several weeks. Altogether, in this study a library of biocompatible novel and totally versatile composite biomaterials are developed and characterized, with tunable mechanical properties that give structure and support myotube formation and alignment.


De Goede, M., Chang, L., Dijkstra, M., Obregón, R., Ramón-Azcon, J., Martínez, E., Padilla, L., Adan, J., Mitjans, F., García-Blanco, S.M., (2018). Al2O3 Microresonator based passive and active biosensors ICTON 2018 20th International Conference on Transparent Optical Networks , IEEE Computer Society (Bucharest, Romania) , 8473820

Al2O3 microresonators were realized for sensing applications of both passive and active devices. Passive microring resonators exhibited quality factors up to 3.2×105 in air. A bulk refractive index sensitivity of 100 nm/RIU was demonstrated together with a limit of detection of 10-6 RIU. Functionalizing their surface allowed for the label-free detection of the biomarker rhS100A4 from urine with a limit of detection of 3 nM. Furthermore, single-mode Al2O3:Yb3+ microdisk lasers were realized that could operate in an aqueous environment. Upon varying the bulk refractive index their lasing wavelength could be tuned with a sensitivity of 20 nm/RIU and a LOD of 3×10-6 RIU.


De Goede, M., Chang, L., Dijkstra, M., Obregón, R., Ramón-Azcon, J., Martínez, E., Padilla, L., Adan, J., Mitjans, F., García-Blanco, S.M., (2018). Al2O3 Mmicroresonators for passive and active sensing applications Sensors 2018 Optical Sensors , OSA - The Optical Society (Zurich, Switzerland) Part F110, 1-2

The Al2O3 waveguide technology was explored for sensing applications. Passive microring resonators with a quality factor in air of 3.2×105 were developed with a bulk refractive index sensitivity of ~100 nm/RIU and limit of detection of ~10-6 RIU. These were functionalized to detect the biomarker rhS100A4 from urine down to concentrations of 3 nM. Furthermore, Al2O3:Yb3+ microdisk lasers were realized that exhibited single mode lasing operation in water. Their lasing wavelength was tuned by varying the bulk refractive index and a bulk refractive index sensitivity of ~20 nm/RIU with a LOD of ~3×10-6 was achieved.


Mohammadi, M. H., Obregón, R., Ahadian, S., Ramón-Azcón, J., Radisic, M., (2017). Engineered muscle tissues for disease modeling and drug screening applications Current Pharmaceutical Design 23, (20), 2991-3004

Animal models have been the main resources for drug discovery and prediction of drugs’ pharmacokinetic responses in the body. However, noticeable drawbacks associated with animal models include high cost, low reproducibility, low physiological similarity to humans, and ethical problems. Engineered tissue models have recently emerged as an alternative or substitute for animal models in drug discovery and testing and disease modeling. In this review, we focus on skeletal muscle and cardiac muscle tissues by first describing their characterization and physiology. Major fabrication technologies (i.e., electrospinning, bioprinting, dielectrophoresis, textile technology, and microfluidics) to make functional muscle tissues are then described. Finally, currently used muscle tissue models in drug screening are reviewed and discussed.

Keywords: Cardiac muscle, Drug screening, Engineering muscle, Human pharmacological response, Physiological similarity, Skeletal muscle


Obregón, R., Ramón-Azcón, J., Ahadian, S., (2017). Nanofiber composites in blood vessel tissue engineering Nanofiber Composites for Biomedical Applications (ed. Ramalingam, M., Ramakrishna, S.), Elsevier (Duxford, UK) Woodhead Publishing Series in Biomaterials, 483-506

Tissue engineering (TE) aims to restore function or replace damaged tissue through biological principles and engineering. Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Composite nanofibers, which are hybrid nanofibers blended from natural and synthetic polymers, represent a major advancement in TE and regenerative medicine, since they take advantage of the physical properties of the synthetic polymer and the bioactivity of the natural polymer while minimizing the disadvantages of both. Although various nanofibrous matrices have been applied to almost all the areas of TE, in this chapter we will focus on nanofiber composites scaffolds for vascular TE.

Keywords: Blood vessels, Nanofiber composite, Tissue engineering, Vascularized tissue



(See full publication list in ORCID)


Equipment


Micro and nanofabrication techniques:

  • 3D microstructures on hydrogel materials
  • Mini-bioreactor for 3D cell culture
  • Microelectrodes fabrication
  • Synthesis and chemical modification of polymers and surfaces
  • Dielectrophoretic cells and micro particles manipulation

Characterization techniques:

  • Optical Microscopes (white light/epifluorescence)
  • Electrochemical techniques (Potentiometric/Amperometric/Impedance spectroscopy)
  • Immunosensing techniques (Fluorescence ELISA/Colorimetric ELISA/magneto ELISA)

Equipment:

  • Microfluidic systems (High precision syringe pumps/Peristaltic pumps/Micro valves)
  • Biological safety cabinet (class II)
  • Epifluorescence microscope for live-cell imaging

Access to the Nanotechnology Platform (IBEC Core Facilities): equipment for hot embossing lithography, polymer processing and photolithography, chemical wet etching, e-beam evaporation and surface characterization (TOF-SIMS)
Access to the Scientific and Technological Centers (University of Barcelona): equipment for surface analysis (XPS, AFM, XRD), organic structures characterization (NMR) and microscopy techniques (SEM, TEM, confocal)

Collaborations

  • Prof. Josep Samitier
    IBEC
  • Dr. Elena Martinez
    IBEC
  • Dr. Anna Novials
    Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS)
  • Dr. Ramon Gomís
    Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS)
  • Dr. Eduard Montanya
    The Bellvitge Biomedical Research Institute (IDIBELL)
  • Prof. Enric Bertran
    Physics and Engineering of Amorphous Materials and Nanostructures (FEMAN), Department of Applied Physics, University of Barcelona