Javier Ramón Azcón | Group Leader / ICREA Research Professor
Irene Marco Rius | Senior Researcher
Francesco De Chiara | Postdoctoral Researcher
Juanma Fernandez Costa | Postdoctoral Researcher
Gerardo López Muñoz | Postdoctoral Researcher
Maria Alejandra Ortega Machuca | Postdoctoral Researcher
Júlia Rodríguez Comas | Postdoctoral Researcher
José Yeste Lozano | Postdoctoral Researcher
Marc Azagra Rodríguez | PhD Student
Laura Clua Ferré | PhD Student
Xiomara Gislen Fernández Garibay | PhD Student
Ferran Velasco Mallorquí | PhD Student
Alba Herrero Gómez | Laboratory Technician
Eduard Martin Lasierra | Masters Student
Ainoa Tejedera Villafranca | Masters Student
Jordina Balaguer Trias | Laboratory Assistant
Ainhoa Ferret Miñana | Laboratory Assistant
Rodrigo Alvarez Velasco | Visiting Researcher
About
Our research is focused on multi tissues organs-on-a-chip (OOC) and more specifically in the metabolic crosstalk within tissues and their relationship with metabolic diseases. Our projects are focused on four key tissues regulating glucose homeostasis, namely, the pancreas, liver, skeletal muscle, and adipose tissue. To achieve this objective, it is necessary a combined interdisciplinary approach:
-Biomaterials and tissue engineering research
1) We have several lines of research related with skeletal muscle. Our first approach was with C2C12 mice cell line. We evaluated the influence of mechanical stiffness and geometrical confinement on the 3D culture of myoblast-laden chemically modified gelatin photo-cross linkable composite hydrogels in terms of in vitro myogenesis.
2) Encapsulation of beta-cells like from human skin fibroblast (collaboration with IDIBAPS). This work addresses two critical issues in the design of an efficient beta-cell replacement therapy: an accessible cell source for generation of substitute beta-cells and an adequate delivery device for transplantation. On one hand, we propose to generate transplantable functional insulin-producing beta-cells from fibroblasts through direct reprogramming strategies that bypass the pluripotent iPS stage. On a second objective, we are working in a new system of encapsulating beta-cells like in two steps, microencapsulation to protect cells from immune system and microencapsulation to mechanically protect them and manipulate them.
3) We are developing three-dimensional micro liver models using various biomaterials to recreate the in vivo-like mechanical properties and using hepatocytes and stellate cells. We are collaborating with Grifols company to test some drugs in our model.
4) We have a collaboration project with NovoNordisk to work in new approaches to encapsulate retinal cells.
-Biosensing technology:

Pancreas islet stained in blue for nuclei and red for actin inside a microporous microfibrillated cellulose-gelatin scaffold stained with green.
1) Integrating biosensors in an organ-on-a-chip. We are studying with in situ electrochemical biosensors the release of insulin under the effect of external stimuli, changes in glucose levels and myokines secreted by skeletal muscle (multi-OOC approach).
2) Related with this project we are implementing new biosensors systems. To fully exploit the potential of the organs-on-a-chip, there is a need to interface them to integrated sensing modules, capable to monitor in real-time their biochemical response to external stimuli, like stress or drugs. The goal of this project is to answer this need, by developing a novel technology based on integrating localized surface plasmon resonance (LSPR) sensing module to organs-on-a-chip devices to monitor disease and evaluate drug response in organs-on-a-chip models.
3) Myotonic dystrophy type 1 (DM1) (collaboration with Hospital de la Fe and INCLIVA, Valencia, Spain). We have developed human skeletal muscle micro physiological tissues using micro molding technology and we have integrated them with amperometric biosensors to study the inflammatory process related with electrical and chemical stimuli. We have used transdifferentiated skin fibroblast human cells from DM1 patients and healthy human. Using this platform, we have started to evaluate different treatments, to screen drugs and to evaluate doses.
4) NMR integrated with OOC. The objective of this project is to develop a new technology based on magnetic resonance spectroscopy and imaging using dynamic nuclear polarisation (DNP-MR) integrated with OOC devices to monitor disease and evaluate drug response in OOC models. As a proof-of-concept, this project will fabricate a biomimetic multi OOC integrated device composed of liver spheroids and pancreatic islets and develop the necessary DNP-MR hardware and software to study metabolic diseases and for future drug screening applications. We are working in collaboration with Oxford instrument and Multiwave companies.

Schematic overview of the configuration and function of the muscle-on-a-chip. (A) The flow pass through the microdevice where 3D SM tissue is electrically (ITO-IDA electrodes) or biologically (LPS) stimulated. The outlet flow containing the IL-6 and TNF-α goes directly to an 8-way microfluidic distributor to reach the sensing system. (Lab Chip 19, 2568–2580 (2019)).
Projects
EU-funded projects
DAMOC · ‘Diabetes Approach by Multi-Organ-on-a-Chip’ (2017-2021) | ERC | Javier Ramón |
BLOC · Benchtop NMR for Lab-on-Chip (2020-2022) | European Comission FET-Open | Javier Ramón |
National Projects
INDUCT · Fabrication of a biomimetic in vitro model of the intestinal tube muscle wall: smooth muscle-on-a-chip (2018-2020) | MINECO | Javier Ramón |
Privately funded projects
Tatami · Therapeutic targeting of MBNL microRNAs as innovative treatments for myotonic dystrophy | Fundació bancaria “La Caixa” | Javier Ramón |
Publications
Gómez-Domínguez, D., Epifano, C., Miguel, F., Castaño, A. G., Vilaplana-Martí, B., Martín, A., Amarilla-Quintana, S., Bertrand, A. T., Bonne, G., Ramón-Azcón, J., Rodríguez-Milla, M. A., Pérez de Castro, I., (2020). Consequences of Lmna exon 4 mutations in myoblast function Cells 9, (5), 1286
Trueba-Santiso, A., Fernández-Verdejo, D., Marco-Rius, I., Soder-Walz, J. M., Casabella, O., Vicent, T., Marco-Urrea, E., (2020). Interspecies interaction and effect of co-contaminants in an anaerobic dichloromethane-degrading culture Chemosphere 240, 124877
Velasco, Ferran, Fernandez-Costa, Juan M., Neves, Luisa, Ramon Azcon, Javier, (2020). Volumetric CNT-doped Gelatin-Cellulose scaffold for skeletal muscle tissue engineering Nanoscale Advances 2, 2885-2896
Hernández-Albors, Alejandro, Castaño, Albert G., Fernández-Garibay, Xiomara, Ortega, María Alejandra, Balaguer, Jordina, Ramón-Azcón, Javier, (2019). Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines Biosensors and Bioelectronics: X 2, 100025
Ortega, María A., Fernández-Garibay, Xiomara, Castaño, Albert G., De Chiara, Francesco, Hernández-Albors, Alejandro, Balaguer-Trias, Jordina, Ramón-Azcón, Javier, (2019). Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α Lab on a Chip 19, 2568-2580
De Chiara, F., Checcllo, C. U., Ramón-Azcón, J., (2019). High protein diet and metabolic plasticity in non-alcoholic fatty liver disease: Myths and truths Nutrients 11, (12), 2985
de Goede, M., Dijkstra, M., Obregón, R., Ramón-Azcón, J., Martínez, Elena, Padilla, L., Mitjans, F., Garcia-Blanco, S. M., (2019). Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine Optics Express 27, (13), 18508-18521
García-Lizarribar, Andrea, Fernández-Garibay, Xiomara, Velasco-Mallorquí, Ferran, Castaño, Albert G., Samitier, Josep, Ramon-Azcon, Javier, (2018). Composite biomaterials as long-lasting scaffolds for 3D bioprinting of highly aligned muscle tissue Macromolecular Bioscience 18, (10), 1800167
Ino, Kosuke, Nashimoto, Yuji, Taira, Noriko, Ramón-Azcon, Javier, Shiku, Hitoshi, (2018). Intracellular electrochemical sensing Electroanalysis 30, (10), 2195-2209
de Goede, M., Chang, L., Dijkstra, M., Obregón, R., Ramón-Azcon, J., Martínez, Elena, Padilla, L., Adan, J., Mitjans, F., García-Blanco, S.M., (2018). Al2O3 Microresonator based passive and active biosensors ICTON 2018
20th International Conference on Transparent Optical Networks , IEEE Computer Society (Bucharest, Romania) , 8473820
de Goede, M., Chang, L., Dijkstra, M., Obregón, R., Ramón-Azcon, J., Martínez, Elena, Padilla, L., Adan, J., Mitjans, F., García-Blanco, S.M., (2018). Al2O3 Mmicroresonators for passive and active sensing applications Sensors 2018
Optical Sensors , OSA - The Optical Society (Zurich, Switzerland) Part F110, 1-2
Mohammadi, M. H., Obregón, R., Ahadian, S., Ramón-Azcón, J., Radisic, M., (2017). Engineered muscle tissues for disease modeling and drug screening applications
Current Pharmaceutical Design , 23, (20), 2991-3004
Obregón, R., Ramón-Azcón, J., Ahadian, S., (2017). Nanofiber composites in blood vessel tissue engineering
Nanofiber Composites for Biomedical Applications (ed. Ramalingam, M., Ramakrishna, S.), Elsevier (Duxford, UK) Woodhead Publishing Series in Biomaterials, 483-506
(See full publication list in ORCID)
Equipment
Micro and nanofabrication techniques:
- 3D microstructures on hydrogel materials
- Mini-bioreactor for 3D cell culture
- Microelectrodes fabrication
- Synthesis and chemical modification of polymers and surfaces
- Dielectrophoretic cells and micro particles manipulation
Characterization techniques:
- Optical Microscopes (white light/epifluorescence)
- Electrochemical techniques (Potentiometric/Amperometric/Impedance spectroscopy)
- Immunosensing techniques (Fluorescence ELISA/Colorimetric ELISA/magneto ELISA)
Equipment:
- Microfluidic systems (High precision syringe pumps/Peristaltic pumps/Micro valves)
- Biological safety cabinet (class II)
- Epifluorescence microscope for live-cell imaging
- Pulsar – a high-resolution, 60MHz benchtop NMR spectrometer from Oxford Instruments
Access to the Nanotechnology Platform (IBEC Core Facilities): equipment for hot embossing lithography, polymer processing and photolithography, chemical wet etching, e-beam evaporation and surface characterization (TOF-SIMS)
Access to the Scientific and Technological Centers (University of Barcelona): equipment for surface analysis (XPS, AFM, XRD), organic structures characterization (NMR) and microscopy techniques (SEM, TEM, confocal)
Collaborations
- Prof. Josep Samitier
IBEC - Dr. Elena Martinez
IBEC - Dr. Anna Novials
Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS) - Dr. Ramon Gomís
Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS) - Dr. Eduard Montanya
The Bellvitge Biomedical Research Institute (IDIBELL) - Prof. Enric Bertran
Physics and Engineering of Amorphous Materials and Nanostructures (FEMAN), Department of Applied Physics, University of Barcelona - Dr. Montserrat Costa
2020, Director Plasma Proteins Research, Bioscience Industrial Group, Grifols, Barcelona Spain, Collaborative project - Tryfon Antonakakis
2019, Co-Founder & CEO Multiwave Technologies AG 3 Chemin du Pré Fleuri 1228, Geneva Switzerland, FET-open project - Robert Hardy
2019, Project Manager Oxford Instruments plc Abingdon, Oxfordshire, England, FET-open project - Dr. Carlos Villaescusa
2018, Principal Scientist/Specialist, Project Leader, Department of Stem Cell Discovery, Novo Nordisk Denmark, Collaborative project
Clinical collaborations
- Project “TATAMI” funded by Fundación Bancaria “La Caixa” – CaixaHealth program. In this project, we are developing a platform to perform drug screening analysis in human engineered microtissues in close collaboration with Professor Ruben Artero from Instituto de Investigaciones Clínicas de Valencia (INCLIVA) and medical doctor Vilchez from Hospital de la Fe (Valencia)
- We are also collaborating with Hospital de Sant Pau (Barcelona), with the group of senior professor Isabel Illa Sendra we are developing human microtissues to study the myasthenia gravis neuromuscular rare disease.
- In a Smart Specialization Project (RIS3CAT, ADVANCECAT project), I am working with senior professor Eduard Montanya from Hospital de Bellvitge (Barcelona) to develop transplantable patches of human pancreatic islets.
- Finally, we are collaborating with Doctor Jesus Castro from Hospital de la Vall de Hebron (Barcelona) to study chronic fatigue.
News/Jobs
L’IBEC busca la complicitat de la societat per accelerar la recerca contra la COVID19
L’Institut de Bioenginyeria de Catalunya (IBEC) posa en marxa la campanya Faster Future “A per la COVID19”, amb l’objectiu de recaptar els 100.000€ necessaris per accelerar tres projectes de recerca en col·laboració amb hospitals i associacions de pacients.
L’IBEC participa en l’Innovation Day Barcelona 2020
Des del 31 d’octubre fins el 7 de novembre participants de diferents àmbits i nacionalitats van participar en la 3ª edició de l’Innovation Day (i-Day), una sèrie d’esdeveniments organitzats per EIT Health en col·laboració amb institucions locals d’investigació i salut.
Investigadors de l’IBEC guardonats per les seves activitats de comunicació
La setmana passada diversos investigadors de l’IBEC van ser guardonats per la seva qualitat en la difusió de la bioenginyeria. Des de xerrades científiques, fins a vídeos i pòsters, els científics i enginyers de l’IBEC mostren el seu talent dins i fora del laboratori.
Nanotecnologia per a millorar el creixement dels teixits humans al laboratori
Investigadors de l’Institut de Bioenginyeria de Catalunya (IBEC) desenvolupen una innovadora bastida que permet el creixement de teixit muscular en el laboratori, a escala mil·limètrica. Aquesta tecnologia, obre una porta a potencials aplicacions en els camps del trasplantament d’òrgans i l’enginyeria, el cribratge de fàrmacs i el modelatge de malalties.
L’IBEC se suma a la comunitat BASE3D per a contribuir al futur de la impressió 3D
L’Institut de Bioenginyeria de Catalunya (IBEC) aportarà la seva àmplia experiència en impressió i bioimpressió 3D a la comunitat BASE 3D, una entitat que agrupa centres de recerca de tot Catalunya amb l’objectiu de potenciar l’R+D+I en el camp de la impressió 3D.
Els grups dirigits per Josep Samitier, Elisabeth Engel, Núria Montserrat i Javier Ramón a l’IBEC se sumen al projecte BASE3D.
L’IBEC lidera un projecte europeu per avaluar la resposta a fàrmacs en dispositius d’òrgan-en-un-xip
Un grup d’investigadors de l’Institut de Bioenginyeria de Catalunya (IBEC) lidera el projecte europeu BLOC, una iniciativa capitanejada pels investigadors Javier Ramón i Irene Marco que busca avaluar la resposta a diferents fàrmacs en malalties metabòliques utilitzant dispositius d’òrgan-en-un- xip mitjançant ressonància magnètica nuclear (RMN). Per a això, el consorci comptarà amb un pressupost de gairebé 3 milions d’euros, finançats pel programa FET Open d’Horizon 2020.
Com triar el millor fàrmac per a cada pacient amb càncer? Irene Marco a BigVan de La Vanguardia
Irene Marco explica a la secció BigVan de La Vanguardia com gràcies a la microfluídica i a la investigació basada en l’ús de dispositius “organ-on-a-xip” es pot donar un pas endavant cap a la medicina personalitzada.
Investigadors de l’IBEC desenvolupen una plataforma de bioenginyeria que permet detectar molèules pro-inflamatòries presents en desordres musculars
El grup de recerca de Biosensors per a la bioenginyeria liderat per Javier Ramón ha desenvolupat una plataforma de detecció per a la captació in-situ de molècules pro-inflamatòries segregades pels teixits, conegudes com a citoquines. Aquesta nova metodologia obre una porta a la comprensió dels desordres metabòlics presents en les malalties musculars a més a més del desenvolupament d’aplicacions de detecció de drogues.
Tot i que el 40% del total de massa corporal és teixit muscular esquelètic, segons l’Associació Mèdica Estatunidenca, no existeix un perfil mèdic clínic especialitzat en el tractament de malalties musculars. És precisament en aquesta àrea que des de fa uns anys, el grup de recerca del Dr. Javier Ramón a l’IBEC, treballa per omplir l’escletxa entre els trastorns musculars i les teràpies mèdiques específiques.