A material that encourages blood vessels to form

In a further step forward in their quest to achieve functional biomaterials for tissue regeneration, IBEC’s Biomaterials for Regenerative Therapies group has revealed a new construct that enhances blood vessel formation and maturation in vivo.

In the paper published in Acta Biomaterialia at the end of last year, the group and their collaborators at the Georgia Institute of Technology present a new implantable hydrogel that contains both human mesenchymal stromal cells (hMSCs) and calcium-releasing microparticles.

Read more…

How perception shapes our actions

Last Saturday, another “Classico” saw Messi and Ronaldo display their other-worldly skills and ball control. At the heart of their performance stands the amazing ability to control their bodies in anticipation of the movements of their team members, opponents – and especially the football.

These anticipatory motor actions are essential for sport, but also underlie our everyday behavior, from walking or grasping to riding a bicycle or typing on a keyboard. But how exactly are these actions controlled?

Read more…

A molecular mechanism could explain how bacteria resist antibiotics

IBEC researchers have shown for the first time how bacteria make DNA under stressful conditions, such as drug treatments.

This new knowledge could help develop new antibiotics that work, tackling the urgent problem of antibiotic resistance.

The Bacterial infections: antimicrobial therapies group led by Dr. Eduard Torrents was studying the bacterial strain Pseudomonas aeruginosa, which can cause severe chronic lung infections in cystic fibrosis (CF) patients, leading to severely impaired lung function, an increased risk of respiratory failure, and death.

Read more…

Enzyme-powered nanomotors deliver anti-cancer drugs more efficiently

IBEC researchers have demonstrated that their enzyme-powered nanobots show a marked improvement in drug delivery efficiency over passive ones.

The Advanced Functional Materials paper is the result of two years of work at IBEC, where Samuel Sanchez’s group has been experimenting with enzyme catalysis to power micro- and nanomotors. By consuming biocompatible fuels, these nanoparticles can then be used for biomedical applications such as targeted drug delivery to cancer cells.

Read more…

Cells feel their environment to explore it

The way cells find their way around is by ‘groping’ rather than seeing their surroundings: this is the main conclusion of a study published in Nature last week involving several IBEC groups and their collaborators.

“We determined how cells detect the position of molecules (or ligands) in their environment with nanometric accuracy,” explains Pere Roca-Cusachs, group leader at IBEC and assistant professor at the University of Barcelona, who led the study. “By adhering to the ligands, the cells apply a force they can detect. As this force depends on the spatial distribution of the ligands, this allows the cells to ‘feel’ their surroundings. It’s like recognizing somebody’s face in the dark by touching it with your hand, rather than seeing the person.”

Read more…

Deciphering cell language

New insights into the intercellular communications mechanism that regulates cell repositioning leads the way towards the development of targeted therapies in regenerative medicine

Understanding the language of cells in order to redirect them when necessary: this is one possibility unveiled by researchers at the Center for Regenerative Medicine of Barcelona (CMR[B]), led by Dr. Samuel Ojosnegros, who describe in their latest paper the intercellular communications mechanism involved in cell relocation.

The work, published in Proceedings of the National Academy of Sciences (PNAS), was carried out in collaboration with the groups of Elena Martínez (IBEC) and Melike Lakadamyali (ICFO), among others. The fruitful collaboration also gave rise to the publication of work by Verónica Hortigüela, former PhD student in Elena’s group, who bioengineered a nanopatterning strategy that provides control over this communication mechanism.

Read more…

IBEC investigators show that physical forces activate genes involved in cancer

In their effort to shed light on the role that physical forces play in the body, Pere Roca-Cusachs’ group at IBEC has shown how these forces ‘switch on’ the expression of genes that may result in cancer.

Cells apply mechanical forces to their surrounding tissue, and this mechanical effect is crucial for tissue function. In diseases such as cancer or liver and lung fibrosis, tissue rigidity and mechanical forces increase, promoting the progression of the disease.

Read more…

IBEC researchers uncover flaws in one of the most commonly used bacterial strain in laboratories

Eduard Torrents’ group at IBEC has published some important findings that could lead to a change in common experimental protocol.

Along with their collaborators at Hospital Universitari Vall d’Hebron and in the Department de Genètica i Microbiologia of the UAB, Eduard and PhD student Anna Crespo reveal in Scientific Reports today that the most-used laboratory strain of bacteria may not be the reliable reference tool for testing new antibiotic treatments that it was previously thought to be.

Read more…