Molecular Bionics

Giuseppe Battaglia | Group Leader / ICREA Research Professor
Azzurra Apriceno | Postdoctoral Researcher
Ian Peter Williams | Postdoctoral Researcher
Claudia Di Guglielmo | Laboratory Technician
Gabriele Marchello | Visiting Researcher




We are chemists, physicists, mathematicians, engineers, biologists who work alongside to design bionic units that mimic specific biological functions and/or introduce operations that do not exist in Nature. We apply a constructionist approach where we mimic biological complexity in the form of design principles to produce functional units from simple building blocks and their interactions.​ We called such an approach: Molecular Bionics.


We are engaged in several activities involving the synthesis and characterisation of novel hierarchal materials whose properties are the result of the holistic combination of its components:

Molecular engineering

We combine synthetic and supramolecular chemistry to tune inter/intramolecular interactions and self-assembly processes to form dynamic soft materials whose molecular, supramolecular and mesoscale structures are tuned and fit for the final application (pictured right: molecular engineering of nanoscopic structures starting from molecule passing to polymers and finally to supra molecular structures).


Physical biology

Figure 1 Giant polymersomes formed by 2D printing (Howse et al Nature Materials 2009)

Our materials are designed to interact with living systems and thus its biological activity is studied in high detail. We have developed and established new methodologies to study living systems and how synthetic materials interact with them combining holistically physical and life sciences (Physical Biology).


Synthetic biology

Figure 2; The brain vasculature (red) of a mouse surronded by astrocytes (cyan) and neurons (white) (Matias-Lorenço et al in preparation )

Both know-hows are applied to study biological organisation and complexity creating synthetic surrogates that act as models, as well as to engineer novel sophisticated ways to interact with living organisms.



In analogy to medical bionics, where engineering and physical science converge to the design of replacement and/or enhancement of malfunctioning body parts, we take inspiration from viruses, trafficking vesicles and exosomes to apply molecular engineering to create nanoscopic carriers that can navigate the human body (Somanautics) with the final aim to improve drug delivery or create new diagnostic tools.

Visit our external website to find out more.



Donnelly, Joanna L., Offenbartl-Stiegert, Daniel, Marín-Beloqui, José M., Rizzello, Loris, Battaglia, Guiseppe, Clarke, Tracey M., Howorka, Stefan, Wilden, Jonathan D., (2020). Exploring the relationship between BODIPY structure and spectroscopic properties to design fluorophores for bioimaging Chemistry - A European Journal 26, (4), 863-872

Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure–activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.

Gouveia, Virgínia M., Rizzello, Loris, Nunes, Claudia, Poma, Alessandro, Ruiz-Perez, Lorena, Oliveira, António, Reis, Salette, Battaglia, Giuseppe, (2019). Macrophage targeting pH responsive polymersomes for glucocorticoid therapy Pharmaceutics 11, (11), 614

Glucocorticoid (GC) drugs are the cornerstone therapy used in the treatment of inflammatory diseases. Here, we report pH responsive poly(2-methacryloyloxyethyl phosphorylcholine)–poly(2-(diisopropylamino)ethyl methacrylate) (PMPC–PDPA) polymersomes as a suitable nanoscopic carrier to precisely and controllably deliver GCs within inflamed target cells. The in vitro cellular studies revealed that polymersomes ensure the stability, selectivity and bioavailability of the loaded drug within macrophages. At molecular level, we tested key inflammation-related markers, such as the nuclear factor-κB, tumour necrosis factor-α, interleukin-1β, and interleukin-6. With this, we demonstrated that pH responsive polymersomes are able to enhance the anti-inflammatory effect of loaded GC drug. Overall, we prove the potential of PMPC–PDPA polymersomes to efficiently promote the inflammation shutdown, while reducing the well-known therapeutic limitations in GC-based therapy.

Keywords: Inflammation, Macrophages, Glucocorticoid, Polymersomes


  • State-of-the-art facilities for cell culture including 5 class A cell cabinets: one dedicated for LPS and RNAse free cell culture and one dedicated for infected tissues
  • Fluorescence Activated Cell Sorting (FACS)
  • Confocal microscope to perform live cell 4D imaging
  • Thermocycler
  • Real-time PCR
  • Automated Western Blot
  • Gel Permeation Chromatography
  • High-Performance Liquid Chromatography
  • Ultra Performance Liquid Chromatography equipped with fluorescence, UV/Vis and Infrared and light scattering detectors
  • Dynamic light scattering unit
  • Nanoparticle tracking analysis
  • UV and Fluorescence spectroscopy
  • Automated liquid handling units
  • Nanoparticle production units


Scientific collaborations (outside IBEC)

  • Xavier Salvatella (IRB Barcelona)
  • Francesca Peiro (Physics-University of Barcelona)
  • Kostas Kostarellos (Life Science- University of Manchester/ICN2)
  • Giorgio Volpe (Chemistry-UCL)
  • Simona Parrinello (Cancer Institute -UCL)
  • Finn Werner (Structural Biology -UCL)
  • Nick Lane (Evolutionary Biology -UCL)
  • Darren Hargraves (Pediatric Neuro-Oncology -UCL)
  • Timothy McHugh (Clinical Microbiology =UCL)
  • Sebastian Brander (Neurology -UCL)
  • Joan Abbott (Physiology -King’s College London)
  • Molly Stevens (Bioengineering -Imperial College London)
  • Stefano Angioletti-Uberti (Materials Science -Imperial College London)
  • Ricardo Sapienza (Physics -Imperial College London)
  • Daan Frenkel (Chemisty-University of Cambridge)
  • Charlotte Williams (Chemistry -University of Oxford)
  • Francesco Gervasio (Pharmacology -University of Geneve/UCL, UK)
  • Francesco Stellacci (Bionegineering -EPFL Switzerland)
  • Tambet Tessalu (Cancer Biology -University of Tartu (Estonia)/ Sanford Burnham Prebys Medical Discovery Institute)
  • Darrel Irvine (Bioengineering -MIT)
  • Xiaohe Tian (Life Sciences University of Anhui)
  • Yupeng Tian (Chemistry University of Anhui)
  • Lei Luo (Pharmacy -Southwest University, China)
  • Kai Luo (HuaXi hospital Sichuan University).

Clinical collaborations

  • Darren Hargrave (Great Ormond Street Hospital, UCLH London)
  • Sebastian Brander (Queen Square National Centre for Neurology, UCLH London)




Selectividad de rango: un nuevo concepto para administrar de forma eficiente fármacos mediante nanopartículas.

En un nuevo estudio publicado en la revista científica Nature Communications, los investigadores describen un nuevo concepto llamado “selectividad de rango”, que explica por qué las nanopartículas biomiméticas solo se unen a los receptores cuando su densidad está dentro de un rango preciso.

El hallazgo podría allanar el camino para el desarrollo de terapias altamente dirigidas contra una serie de enfermedades.

Read more…

Bioingeniería contra las infecciones bacterianas más resistentes y mortales

Un equipo internacional liderado por investigadores del Instituto de Bioingeniería de Cataluña (IBEC) lleva a cabo un estudio que abre la puerta a una nueva terapia capaz de eliminar de manera rápida, y eficaz, infecciones de bacterias intracelulares, las más resistentes a la maquinaria inmunológica.

Esta terapia, basada en vesículas sintéticas, reduciría considerablemente la dosis y duración de los tratamientos antimicrobianos, disminuyendo así el peligro a generar resistencia a los antibióticos de patógenos como los causantes de la tuberculosis.

Read more…

Una nueva terapia “más rápida y segura” contra la tuberculosis

Un equipo de científicos internacionales liderado por el Instituto de Bioingeniería de Cataluña (IBEC) ha desarrollado una terapia “más rápida, eficaz y segura” para eliminar infecciones de bacterias intracelulares causantes de enfermedades como la tuberculosis. Entre los científicos que participan en el estudio se encuentran el investigador principal Giuseppe Battaglia y el investigador Loris Rizzello del IBEC.

Read more…

Un investigador del IBEC desarrolla un modelo para la nanomedicina de precisión

Investigadores del Instituto de Bioingeniería de Cataluña (IBEC) han propuesto un modelo que ofrece información importante sobre cómo las nanopartículas interactúan con células, virus, bacterias o proteínas, entre otros.

El modelo tiene en cuenta los distintos factores que determinan la afinidad de las nanopartículas con células, virus, bacterias o proteínas, lo que es clave para elaborar fármacos a medida para cada paciente.

Read more…