Year 2018

By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott, T. J., Demiris, Y., Dominey, P. F., Verschure, P. F. M. J., (2018). DAC-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self IEEE Transactions on Cognitive and Developmental Systems in press

This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.

Keywords: Autobiographical Memory., Biology, Cognition, Cognitive Robotics, Computer architecture, Distributed Adaptive Control, Grounding, Human-Robot Interaction, Humanoid robots, Robot sensing systems, Symbol Grounding

Hervera, A., De Virgiliis, F., Palmisano, I., Zhou, L., Tantardini, E., Kong, G., Hutson, T., Danzi, M. C., Perry, R. B. T., Santos, C. X. C., Kapustin, A. N., Fleck, R. A., Del Río, J. A., Carroll, T., Lemmon, V., Bixby, J. L., Shah, A. M., Fainzilber, M., Di Giovanni, S., (2018). Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons Nature Cell Biology 20, (3), 307-319

Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-

Keywords: Adult neurogenesis, Endocytosis, Exocytosis, Monocytes and macrophages, Stress signalling

Hortigüela, Verónica, Larrañaga, Enara, Cutrale, Francesco, Seriola, Anna, García-Díaz, María, Lagunas, Anna, Andilla, Jordi, Loza-Alvarez, Pablo, Samitier, Josep, Ojosnegros, Samuel, Martinez, Elena, (2018). Nanopatterns of surface-bound ephrinB1 produce multivalent ligand-receptor interactions that tune EphB2 receptor clustering Nano Letters 18, (1), 629-637

Here we present a nanostructured surface able to produce multivalent interactions between surface-bound ephrinB1 ligands and membrane EphB2 receptors. We created ephrinB1 nanopatterns of regular size (<30 nm in diameter) by using self-assembled diblock copolymers. Next, we used a statistically enhanced version of the Number and Brightness technique, which can discriminate - with molecular sensitivity - the oligomeric states of diffusive species to quantitatively track the EphB2 receptor oligomerization process in real time. The results indicate that a stimulation using randomly distributed surface-bound ligands was not sufficient to fully induce receptor aggregation. Conversely, when nanopatterned onto our substrates, the ligands effectively induced a strong receptor oligomerization. This presentation of ligands improved the clustering efficiency of conventional ligand delivery systems, as it required a 9-fold lower ligand surface coverage and included faster receptor clustering kinetics compared to traditional crosslinked ligands. In conclusion, nanostructured diblock copolymers constitute a novel strategy to induce multivalent ligand-receptor interactions leading to a stronger, faster, and more efficient receptor activation, thus providing a useful strategy to precisely tune and potentiate receptor responses. The efficiency of these materials at inducing cell responses can benefit applications such as the design of new bioactive materials and drug-delivery systems.

Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, A., Sánchez, S., (2018). Enzyme-powered nanobots enhance anticancer drug delivery Advanced Functional Materials Early View (Online Version of Record published before inclusion in an issue)

The use of enzyme catalysis to power micro- and nanomotors exploiting biocompatible fuels has opened new ventures for biomedical applications such as the active transport and delivery of specific drugs to the site of interest. Here, urease-powered nanomotors (nanobots) for doxorubicin (Dox) anticancer drug loading, release, and efficient delivery to cells are presented. These mesoporous silica-based core-shell nanobots are able to self-propel in ionic media, as confirmed by optical tracking and dynamic light scattering analysis. A four-fold increase in drug release is achieved by nanobots after 6 h compared to their passive counterparts. Furthermore, the use of Dox-loaded nanobots presents an enhanced anticancer efficiency toward HeLa cells, which arises from a synergistic effect of the enhanced drug release and the ammonia produced at high concentrations of urea substrate. A higher content of Dox inside HeLa cells is detected after 1, 4, 6, and 24 h incubation with active nanobots compared to passive Dox-loaded nanoparticles. The improvement in drug delivery efficiency achieved by enzyme-powered nanobots may hold potential toward their use in future biomedical applications such as the substrate-triggered release of drugs in target locations.

Keywords: Drug delivery, Enzymatic catalysis, Nanobots, Nanomachines, Nanomotors

Gumi-Audenis, Berta, Costa, Luca, Redondo-Morata, Lorena, Milhiet, Pierre-Emmanuel, Sanz, Fausto, Felici, Roberto, Giannotti, M. I., Carla, Francesco, (2018). In-plane molecular organization of hydrated single lipid bilayers: DPPC:cholesterol Nanoscale 10, 87-92

Understanding the physical properties of the cholesterol-phospholipid systems is essential to get a better knowledge on the function of each membrane constituent. We present a novel, simple and user-friendly setup that allows for straightforward grazing incidence X-rays diffraction characterization of hydrated individual supported lipid bilayers. This configuration minimizes the scattering from the liquid and allows the detection of the extremely weak diffracted signal of the membrane, enabling the differentiation of coexisting domains in DPPC:cholesterol single bilayers.

Alcaraz, J., Otero, J., Jorba, I., Navajas, D., (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy Seminars in Cell and Developmental Biology 73, 71-81

There is growing recognition that the mechanical interactions between cells and their local extracellular matrix (ECM) are central regulators of tissue development, homeostasis, repair and disease progression. The unique ability of atomic force microscopy (AFM) to probe quantitatively mechanical properties and forces at the nanometer or micrometer scales in all kinds of biological samples has been instrumental in the recent advances in cell and tissue mechanics. In this review we illustrate how AFM has provided important insights on our current understanding of the mechanobiology of cells, ECM and cell-ECM bidirectional interactions, particularly in the context of soft acinar tissues like the mammary gland or pulmonary tissue. AFM measurements have revealed that intrinsic cell micromechanics is cell-type specific, and have underscored the prominent role of

Keywords: Atomic force microscopy, Beta1 integrin, Elastic modulus, Extracellular matrix, Morphogenesis, Tissue decellularization

Puigbò, J. Y., Maffei, G., Herreros, I., Ceresa, M., González Ballester, M. A., Verschure, P. F. M. J., (2018). Cholinergic behavior state-dependent mechanisms of neocortical gain control: A neurocomputational study Molecular Neurobiology 55, (1), 249-257

The embodied mammalian brain evolved to adapt to an only partially known and knowable world. The adaptive labeling of the world is critically dependent on the neocortex which in turn is modulated by a range of subcortical systems such as the thalamus, ventral striatum, and the amygdala. A particular case in point is the learning paradigm of classical conditioning where acquired representations of states of the world such as sounds and visual features are associated with predefined discrete behavioral responses such as eye blinks and freezing. Learning progresses in a very specific order, where the animal first identifies the features of the task that are predictive of a motivational state and then forms the association of the current sensory state with a particular action and shapes this action to the specific contingency. This adaptive feature selection has both attentional and memory components, i.e., a behaviorally relevant state must be detected while its representation must be stabilized to allow its interfacing to output systems. Here, we present a computational model of the neocortical systems that underlie this feature detection process and its state-dependent modulation mediated by the amygdala and its downstream target the nucleus basalis of Meynert. In particular, we analyze the role of different populations of inhibitory interneurons in the regulation of cortical activity and their state-dependent gating of sensory signals. In our model, we show that the neuromodulator acetylcholine (ACh), which is in turn under control of the amygdala, plays a distinct role in the dynamics of each population and their associated gating function serving the detection of novel sensory features not captured in the state of the network, facilitating the adjustment of cortical sensory representations and regulating the switching between modes of attention and learning.

Keywords: Acetylcholine, Inhibitory network, Neocortical circuits, Neuromodulation

Urrea, L., Segura-Feliu, M., Masuda-Suzukake, M., Hervera, A., Pedraz, L., Aznar, J. M. G., Vila, M., Samitier, J., Torrents, E., Ferrer, I., Gavín, R., Hagesawa, M., Del Río, J. A., (2018). Involvement of cellular prion protein in Molecular Neurobiology online, 1-14

The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of

Keywords: Amyloid spreading, Microfluidic devices, Prnp, Synuclein

Matamoros-Angles, A., Gayosso, L. M., Richaud-Patin, Y., Di Domenico, A., Vergara, C., Hervera, A., Sousa, A., Fernández-Borges, N., Consiglio, A., Gavín, R., López de Maturana, R., Ferrer, I., López de Munain, A., Raya, A., Castilla, J., Sánchez-Pernaute, R., Del Río, J. A., (2018). iPS cell cultures from a Gerstmann-Sträussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology Molecular Neurobiology online

Gerstmann-Sträussler-Scheinker (GSS) syndrome is a fatal autosomal dominant neurodegenerative prionopathy clinically characterized by ataxia, spastic paraparesis, extrapyramidal signs and dementia. In some GSS familiar cases carrying point mutations in the PRNP gene, patients also showed comorbid tauopathy leading to mixed pathologies. In this study we developed an induced pluripotent stem (iPS) cell model derived from fibroblasts of a GSS patient harboring the Y218N PRNP mutation, as well as an age-matched healthy control. This particular PRNP mutation is unique with very few described cases. One of the cases presented neurofibrillary degeneration with relevant Tau hyperphosphorylation. Y218N iPS-derived cultures showed relevant astrogliosis, increased phospho-Tau, altered microtubule-associated transport and cell death. However, they failed to generate proteinase K-resistant prion. In this study we set out to test, for the first time, whether iPS cell-derived neurons could be used to investigate the appearance of disease-related phenotypes (i.e, tauopathy) identified in the GSS patient.

Keywords: Cellular prion protein, Gerstmann-Sträussler-Scheinker, Induced pluripotent stem cells, Tau

Beiert, T., Knappe, V., Tiyerili, V., Stöckigt, F., Effelsberg, V., Linhart, M., Steinmetz, M., Klein, S., Schierwagen, R., Trebicka, J., Roell, W., Nickenig, G., Schrickel, J. W., Andrié, R. P., (2018). Chronic lower-dose relaxin administration protects from arrhythmia in experimental myocardial infarction due to anti-inflammatory and anti-fibrotic properties International Journal of Cardiology 250, 21-28

Background: The peptide hormone relaxin-2 (RLX) exerts beneficial effects during myocardial ischemia, but functional data on lower-dose RLX in myocardial infarction (MI) is lacking. Therefore, we investigated the impact of 75 

Keywords: Arrhythmia, Myocardial infarction, Relaxin-2, Ventricular tachycardia

Krivitsky, Adva, Polyak, Dina, Scomparin, Anna, Eliyahu, Shay, Ofek, Paula, Tiram, Galia, Kalinski, Hagar, Avkin-Nachum, Sharon, Feiner Gracia, N., Albertazzi, Lorenzo, Satchi-Fainaro, Ronit, (2018). Amphiphilic poly( Nanomedicine: Nanotechnology, Biology and Medicine 14, (2), 303-315

RNAi therapeutics carried a great promise to the area of personalized medicine: the ability to target “undruggable” oncogenic pathways. Nevertheless, their efficient tumor targeting via systemic administration had not been resolved yet. Amphiphilic alkylated poly(

Ferrer, I., García, M. A., González, I. L., Lucena, D. D., Villalonga, A. R., Tech, M. C., Llorens, F., Garcia-Esparcia, P., Martinez-Maldonado, A., Mendez, M. F., Escribano, B. T., Serra, J. J. B., Sabido, E., de la Torre Gómez, C., del Rio, J. A., (2018). Aging-related tau astrogliopathy (ARTAG): Not only tau phosphorylation in astrocytes Brain Pathology Early View Articles

Aging-related tau astrogliopathy (ARTAG) is defined by the presence of two types of tau-bearing astrocytes: thorn-shaped astrocytes (TSAs) and granular/fuzzy astrocytes in the brain of old-aged individuals. The present study is focused on TSAs in rare forms of ARTAG with no neuronal tau pathology or restricted to entorhinal and transentorhinal cortices, to avoid bias from associated tauopathies. TSAs show 4Rtau phosphorylation at several specific sites and abnormal tau conformation, but they lack ubiquitin and they are not immunostained with tau-C3 antibodies which recognize truncated tau at Asp421. Astrocytes in ARTAG have atrophic processes, reduced glial fibrillary acidic protein (GFAP) and increased superoxide dismutase 2 (SOD2) immunoreactivity. Gel electrophoresis and western blotting of sarkosyl-insoluble fractions reveal a pattern of phospho-tau in ARTAG characterized by two bands of 68 and 64 kDa, and several middle bands between 35 and 50 kDa which differ from what is seen in AD. Phosphoproteomics of dissected vulnerable regions identifies an increase of phosphorylation marks in a large number of proteins in ARTAG compared with controls. GFAP, aquaporin 4, several serine-threonine kinases, microtubule associated proteins and other neuronal proteins are among the differentially phosphorylated proteins in ARTAG thus suggesting a hyper-phosphorylation background that affects several molecules, including many kinases and proteins from several cell compartments and various cell types. Finally, present results show for the first time that tau seeding is produced in neurons of the hippocampal complex, astrocytes, oligodendroglia and along fibers of the corpus callosum, fimbria and fornix following inoculation into the hippocampus of wild type mice of sarkosyl-insoluble fractions enriched in hyper-phosphorylated tau from selected ARTAG cases. These findings show astrocytes as crucial players of tau seeding in tauopathies.

Keywords: ARTAG, Kinases, Phosphorylation, Seeding, Tau, Thorn-shaped astrocytes

Garcia-Esparcia, P., Koneti, A., Rodríguez-Oroz, M. C., Gago, B., del Rio, J. A., Ferrer, I., (2018). Mitochondrial activity in the frontal cortex area 8 and angular gyrus in Parkinson's disease and Parkinson's disease with dementia Brain Pathology 28, (1), 43-57

Altered mitochondrial function is characteristic in the substantia nigra in Parkinson's disease (PD). Information about mitochondria in other brain regions such as the cerebral cortex is conflicting mainly because most studies have not contemplated the possibility of variable involvement depending on the region, stage of disease progression and clinical symptoms such as the presence or absence of dementia. RT-qPCR of 18 nuclear mRNAs encoding subunits of mitochondrial complexes and 12 mRNAs encoding energy metabolism-related enzymes; western blotting of mitochondrial proteins; and analysis of enzymatic activities of complexes I, II, II, IV and V of the respiratory chain were assessed in frontal cortex area 8 and the angular gyrus of middle-aged individuals (MA), and those with incidental PD (iPD), long-lasting PD with parkinsonism without dementia (PD) and long-lasting PD with dementia (PDD). Up-regulation of several genes was found in frontal cortex area 8 in PD when compared with MA and in the angular gyrus in iPD when compared with MA. Marked down-regulation of genes encoding mitochondrial subunits and energy metabolism-related enzymes occurs in frontal cortex but only of genes coding for energy metabolism-related enzymes in the angular gyrus in PDD. Significant decrease in the protein expression levels of several mitochondrial subunits encoded by these genes occurs in frontal cortex area 8 and angular gyrus in PDD. Moreover, expression of MT-ND1 which is encoded by mitochondrial DNA is also reduced in PDD. Reduced enzymatic activity of complex III in frontal cortex area 8 and angular gyrus is observed in PD, but dramatic reduction in the activity of complexes I, II, II and IV in both regions characterizes PDD. Dementia in the context of PD is linked to region-specific deregulation of genomic genes encoding subunits of mitochondrial complexes and to marked reduction in the activity of mitochondrial complexes I, II, III and IV.

Keywords: Cerebral cortex, Dementia, Energy metabolism, Incidental PD, Mitochondria, Oxidative phosphorylation, Parkinson disease, PDD, Respiratory chain

Diez-Escudero, A., Espanol, M., Bonany, M., Lu, X., Persson, C., Ginebra, M. P., (2018). Heparinization of Beta Tricalcium Phosphate: Osteo-immunomodulatory Effects Advanced Healthcare Materials Early View (Online Version of Record published before inclusion in an issue)

Immune cells play a vital role in regulating bone dynamics. This has boosted the interest in developing biomaterials that can modulate both the immune and skeletal systems. In this study, calcium phosphates discs (i.e., beta-tricalcium phosphate, β-TCP) are functionalized with heparin to investigate the effects on immune and stem cell responses. The results show that the functionalized surfaces downregulate the release of hydrogen peroxide and proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 beta) from human monocytes and neutrophils, compared to nonfunctionalized discs. The macrophages show both elongated and round shapes on the two ceramic substrates, but the morphology of cells on heparinized β-TCP tends toward a higher elongation after 72 h. The heparinized substrates support rat mesenchymal stem cell (MSC) adhesion and proliferation, and anticipate the differentiation toward the osteoblastic lineage as compared to β-TCP and control. The coupling between the inflammatory response and osteogenesis is assessed by culturing MSCs with the macrophage supernatants. The downregulation of inflammation in contact with the heparinized substrates induces higher expression of bone-related markers by MSCs.

Keywords: Calcium phosphates, Heparinization, Inflammation, Osteogenesis

Basas, Jana, Palau, Marta, Ratia, Carlos, Luis Del Pozo, José, Martín-Gómez, María Teresa, Gomis, Xavier, Torrents, Eduard, Almirante, Benito, Gavaldà , Joan, (2018). High-dose daptomycin is effective as an antibiotic-lock therapy in a rabbit model of Staphylococcus epidermidis catheter-related infection Antimicrobial Agents and Chemotherapy 62, (2), e01777

Long-term catheter-related bloodstream infections (CRBSI) involving coagulase-negative Staphylococci are associated with poor patient outcomes, increased hospitalization and high treatment costs. The use of vancomycin-lock therapy has been an important step forward to treat these biofilms although failures appear in 20% of patients. In this study, we report that a high dose of daptomycin-lock therapy may offer a therapeutic advantage for these CRBSI in just 24 h of treatment.

Mata, A., Gil, V., Pérez-Clausell, J., Dasilva, M., González-Calixto, M. C., Soriano, E., García-Verdugo, J. M., Sanchez-Vives, M. V., Del Río, J. A., (2018). New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation Scientific Reports 8, (1), 1381

The development and maturation of cortical circuits relies on the coordinated actions of long and short range axonal guidance cues. In this regard, the class 3 semaphorins and their receptors have been seen to be involved in the development and maturation of the hippocampal connections. However, although the role of most of their family members have been described, very few data about the participation of Semaphorin 3E (Sema3E) and its receptor PlexinD1 during the development and maturation of the entorhino-hippocampal (EH) connection are available. In the present study, we focused on determining their roles both during development and in adulthood. We determined a relevant role for Sema3E/PlexinD1 in the layer-specific development of the EH connection. Indeed, mice lacking Sema3E/PlexinD1 signalling showed aberrant layering of entorhinal axons in the hippocampus during embryonic and perinatal stages. In addition, absence of Sema3E/PlexinD1 signalling results in further changes in postnatal and adult hippocampal formation, such as numerous misrouted ectopic mossy fibers. More relevantly, we describe how subgranular cells express PlexinD1 and how the absence of Sema3E induces a dysregulation of the proliferation of dentate gyrus progenitors leading to the presence of ectopic cells in the molecular layer. Lastly, Sema3E mutant mice displayed increased network excitability both in the dentate gyrus and the hippocampus proper.

Keywords: Adult neurogenesis, Axon and dendritic guidance

Oller-Moreno, Sergio, Cominetti, Ornella, Galindo, Antonio Núñez, Irincheeva, Irina, Corthésy, John, Astrup, Arne, Saris, Wim H. M., Hager, Jörg, Kussmann, Martin, Dayon, Loïc, (2018). The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention PROTEOMICS - Clinical Applications 12, (1), 1600150

Purpose : The nutritional intervention program “DiOGenes” focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore their relation to body mass index, fat mass, insulin resistance and sensitivity. Experimental Design : Relative protein quantification was obtained at baseline and after combined weight loss/maintenance phases using isobaric tagging and MS/MS. A Welch t-test determined proteins differentially present after intervention. Protein relationships with clinical variables were explored using univariate linear models, considering collection center, gender and age as confounding factors. Results : 473 subjects were measured at baseline and end of the intervention; 39 proteins were longitudinally differential. Proteins with largest changes were sex hormone-binding globulin, adiponectin, C-reactive protein, calprotectin, serum amyloid A, and proteoglycan 4 (PRG4), whose association with obesity and weight loss is known. We identified new putative biomarkers for weight loss/maintenance. Correlation between PRG4 and proline-rich acidic protein 1 (PRAP1) variation and Matsuda insulin sensitivity increment was showed. Conclusions and Clinical Relevance : MS-based proteomic analysis of a large cohort of non-diabetic overweight and obese individuals concomitantly identified known and novel proteins associated with weight loss and maintenance.

Keywords: Biomarker, Diabetes, Large-scale study, Mass spectrometry, Obesity, Proteomics

Fonollosa, Jordi, Solórzano, Ana, Marco, Santiago, (2018). Chemical sensor systems and associated algorithms for fire detection: A review Sensors 18, (2), 553

Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative

Keywords: Fire detection, Gas sensor, Pattern recognition, Sensor fusion, Machine learning, Toxicants, Carbon monoxide, Hydrogen cyanide, Standard test fires, Transducers, Smoke

Páez-Avilés, C., van Rijnsoever, F. J., Juanola-Feliu, E., Samitier, J., (2018). Multi-disciplinarity breeds diversity: the influence of innovation project characteristics on diversity creation in nanotechnology Journal of Technology Transfer online, 1-24

Nanotechnology is an emerging and promising field of research. Creating sufficient technological diversity among its alternatives is important for the long-term success of nanotechnologies, as well as for other emerging technologies. Diversity prevents early lock-in, facilitates recombinant innovation, increases resilience, and allows market growth. Creation of new technological alternatives usually takes place in innovation projects in which public and private partners often collaborate. Currently, there is little empirical evidence about which characteristics of innovation projects influence diversity. In this paper we study the influence of characteristics of EU-funded nanotechnology projects on the creation of technological diversity. In addition to actor diversity and the network of the project, we also include novel variables that have a plausible influence on diversity creation: the degree of multi-disciplinarity of the project and the size of the joint knowledge base of project partners. We apply topic modelling (Latent Dirichlet allocation) as a novel method to categorize technological alternatives. Using an ordinal logistic regression model, our results show that the largest contribution to diversity comes from the multi-disciplinary nature of a project. The joint knowledge base of project partners and the geographical distance between them were positively associated with technological diversity creation. In contrast, the number and diversity of actors and the degree of clustering showed a negative association with technological diversity creation. These results extend current micro-level explanations of how the diversity of an emerging technology is created. The contribution of this study could also be helpful for policy makers to influence the level of diversity in a technological field, and hence to contribute to survival of emerging technologies.

Keywords: Innovation projects, Multi-disciplinarity, Nanotechnology, Social networks, Technological diversity, Topic models

Pacheco, D., Verschure, P. F. M. J., (2018). Long-term spatial clustering in free recall Memory Article in press

We explored the influence of space on the organisation of items in long-term memory. In two experiments, we asked our participants to explore a virtual environment and memorise discrete items presented at specific locations. Memory for those items was later on tested in immediate (T1) and 24 hours delayed (T2) free recall tests, in which subjects were asked to recall as many items as possible in any order. In experiment 2, we further examined the contribution of active and passive navigation in recollection dynamics. Results across experiments revealed a significant tendency for participants to consecutively recall items that were encountered in proximate locations during learning. Moreover, the degree of spatial organisation and the total number of items recalled were positively correlated in the immediate and the delayed tests. Results from experiment 2 indicated that the spatial clustering of items was independent of navigation types. Our results highlight the long-term stability of spatial clustering effects and their correlation with recall performance, complementing previous results collected in immediate or briefly delayed tests.

Keywords: Free recall, Spatial clustering, Spatial memory, Spatial navigation, Virtual reality

Garreta, E., González, F., Montserrat, N., (2018). Studying kidney disease using tissue and genome engineering in human pluripotent stem cells Nephron 138, 48-59

Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.

Keywords: Clustered regularly interspaced short palindromic repeats/CRISPR-associated systems 9, Disease modeling, Gene editing, Human pluripotent stem cells, Kidney genetics, Tissue engineering

Farré, Ramon, Otero, Jordi, Almendros, Isaac, Navajas, Daniel, (2018). Bioengineered lungs: A challenge and an opportunity Archivos de Bronconeumología 54, (1), 31-38

Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation.

Keywords: Tissue engineering, Regenerative medicine, Lung transplantation, Lung repair, Lung regeneration

Munoz, J.J., Amat, D., Conte, V., (2018). Computation of forces from deformed visco-elastic biological tissues Inverse Problems

Abstract We present a least-squares based inverse analysis of visco-elastic biological tissues. The proposed method computes the set of contractile forces (dipoles) at the cell boundaries that induce the observed and quantified deformations. We show that the computation of these forces requires the regularisation of the problem functional for some load configurations that we study here. The functional measures the error of the dynamic problem being discretised in time with a second-order implicit time-stepping and in space with standard finite elements. We analyse the uniqueness of the inverse problem and estimate the regularisation parameter by means of a L-curved criterion. We apply the methodology to a simple toy problem and to an in vivo set of morphogenetic deformations of the Drosophila embryo.

Katuri, Jaideep, Uspal, William E., Simmchen, Juliane, Miguel-López, Albert, Sánchez, Samuel, (2018). Cross-stream migration of active particles Science Advances 4, (1), eaao1755

For natural microswimmers, the interplay of swimming activity and external flow can promote robust directed motion, for example, propulsion against (upstream rheotaxis) or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Using catalytic Janus particles as a model experimental system, we report on a strong directional response that occurs for spherical active particles in a channel flow. The particles align their propulsion axes to be nearly perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model of spherical microswimmers near a planar wall that captures the experimental observations. We show how the directional response emerges from the interplay of shear flow and near-surface swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that semiquantitatively agree with the experimental distributions.

Romeo, Agostino, Moya, Ana, Leung, Tammy S., Gabriel, Gemma, Villa, Rosa, Sánchez, Samuel, (2018). Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis Applied Materials Today 10, 133-141

Here, we present a flexible and low-cost inkjet printed electrochemical sensor for enzyme-free glucose analysis. Versatility, short fabrication time and low cost make inkjet printing a valuable alternative to traditional sensor manufacturing techniques. We fabricated electro-chemical glucose sensors by inkjet printing electrodes on a flexible polyethylene terephthalate substrate. CuO microparticles were used to modify our electrodes, leading to a sensitive, stable and cost-effective platform for non-enzymatic detection of glucose. Selectivity, reproducibility, and life-time provided by the CuO functionalization demonstrated that these sensors are reliable tools for personalized diagnostics and self-assessment of an individual's health. The detection of glucose at concentrations matching that of tear fluid allows us to envisage applications in ocular diagnostics, where painless and non-invasive monitoring of diabetes can be achieved by analyzing glucose contained in tears.

Keywords: Inkjet printing, Non-enzymatic sensor, Glucose, Copper oxide, Tear analysis

Rodríguez, R., Cortés, R., Verónica Guamán, A., Pardo, A., Torralba, Y., Gómez, F., Roca, J., Barberà, J.A., Cascante, M., Marco, S., (2018). Instrumental drift removal in GC-MS data for breath analysis: the short-term and long-term temporal validation of putative biomarkers for COPD Journal of Breath Research Accepted Manuscript online

Abstract Breath analysis holds the promise of a non-invasive technique for the diagnosis of diverse respiratory conditions including COPD and lung cancer. Breath contains small metabolites that may be putative biomarkers of these conditions. However, the discovery of reliable biomarkers is a considerable challenge in the presence of both clinical and instrumental confounding factors. Among the latter, instrumental time drifts are highly relevant, as since question the short and long-term validity of predictive models. In this work we present a methodology to counter instrumental drifts using information from interleaved blanks for a case study of GC-MS data from breath samples. The proposed method includes feature filtering, and additive, multiplicative and multivariate drift corrections, the latter being based on Component Correction. Biomarker discovery was based on Genetic Algorithms in a filter configuration using Fisher´s ratio computed in the Partial Least Squares – Discriminant Analysis subspace as a figure of merit. Using our protocol, we have been able to find nine peaks that provide a statistically significant Area under the ROC Curve (AUC) of 0.75 for COPD discrimination. The method developed has been successfully validated using blind samples in short-term temporal validation. However, in the attempt to use this model for patient screening six months later was not successful. This negative result highlights the importance of increasing validation rigour when reporting biomarker discovery results.

Vilela, Diana, Cossío, Unai, Parmar, Jemish, Martínez-Villacorta, Angel M., Gómez-Vallejo, Vanessa, Llop, Jordi, Sánchez, Samuel, (2018). Medical imaging for the tracking of micromotors ACS Nano In press

Micro/nanomotors are useful tools for several biomedical applications, including targeted drug delivery and minimally invasive microsurgeries. However, major challenges such as in vivo imaging need to be addressed before they can be safely applied on a living body. Here, we show that positron emission tomography (PET), a molecular imaging technique widely used in medical imaging, can also be used to track a large population of tubular Au/PEDOT/Pt micromotors. Chemisorption of an iodine isotope onto the micromotor’s Au surface rendered them detectable by PET, and we could track their movements in a tubular phantom over time frames of up to 15 min. In a second set of experiments, micromotors and the bubbles released during self-propulsion were optically tracked by video imaging and bright-field microscopy. The results from direct optical tracking agreed with those from PET tracking, demonstrating that PET is a suitable technique for the imaging of large populations of active micromotors in opaque environments, thus opening opportunities for the use of this mature imaging technology for the in vivo localization of artificial swimmers.

Bennett, Mark, Cantini, Marco, Reboud, Julien, Cooper, Jonathan M., Roca-Cusachs, Pere, Salmeron-Sanchez, Manuel, (2018). Molecular clutch drives cell response to surface viscosity Proceedings of the National Academy of Sciences 115, (6), 1192-1197

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.

Keywords: Matrix rigidity, Molecular clutch, Surface viscosity, Mechanotransduction, Cell differentiation

Navarro-Requena, Claudia, Weaver, Jessica D., Clark, Amy Y., Clift, Douglas A., Pérez-Amodio, Soledad, Castaño, Óscar, Zhou, Dennis W., García, Andrés J., Engel, Elisabeth, (2018). PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation Acta Biomaterialia In Press, Corrected Proof

The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. Statement of Significance: Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.

Keywords: Calcium, Glass-ceramic particles, Vascularization, hMSC, Hydrogel

Llorens, F., Thüne, K., Martí, E., Kanata, E., Dafou, D., Díaz-Lucena, D., Vivancos, A., Shomroni, O., Zafar, S., Schmitz, M., Michel, U., Fernández-Borges, N., Andréoletti, O., del Río, J. A., Díez, J., Fischer, A., Bonn, S., Sklaviadis, T., Torres, J. M., Ferrer, I., Zerr, I., (2018). Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis Plos Pathogens PLoS Pathogens , 14, (1), e1006802

Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer’s disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.

Del Río, J. A., Ferrer, Isidre, Gavín, R., (2018). Role of cellular prion protein in interneuronal amyloid transmission Progress in Neurobiology In Press, Accepted Manuscript

Several studies have indicated that certain misfolded amyloids composed of tau,

Keywords: Cellular prion protein, Amyloid, Proteinaceous species, ‘prion-like’ spreading, Spreading, Neurodegeneration

García-Díaz, María, Birch, Ditlev, Wan, Feng, Mørck Nielsen, Hanne, (2018). The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles Advanced Drug Delivery Reviews In press,

Abstract Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.

Keywords: Nanoparticle formulation strategies, Corona formation, Digestive tract, Respiratory tract, Luminal content, Methodologies, Analysis

Sebastian, P., Giannotti, M. I., Gómez, E., Feliu, J. M., (2018). Surface Sensitive Nickel Electrodeposition in Deep Eutectic Solvent ACS Applied Energy Materials Article ASAP

The first steps of nickel electrodeposition in a deep eutectic solvent (DES) are analyzed in detail. Several substrates from glassy carbon to Pt(111) were investigated pointing out the surface sensitivity of the nucleation and growth mechanism. For that, cyclic voltammetry and chronoamperometry, in combination with scanning electron microscopy (SEM), were employed. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to more deeply analyze the Ni deposition on Pt substrates. In a 0.1 M NiCl2 + DES solution (at 70 °C), the nickel deposition on glassy carbon takes place within the potential limits of the electrode in the blank solution. Although, the electrochemical window of Pt|DES is considerably shorter than on glassy carbon|DES, it was still sufficient for the nickel deposition. On the Pt electrode, the negative potential limit was enlarged while the nickel deposit grew, likely because of the lower catalytic activity of the nickel toward the reduction of the DES. At lower overpotentials, different hydrogenated Ni structures were favored, most likely because of the DES co-reduction on the Pt substrate. Nanometric metallic nickel grains of rounded shape were obtained on any substrate, as evidenced by the FE-SEM. Passivation phenomena, related to the formation of Ni oxide and Ni hydroxylated species, were observed at high applied overpotentials. At low deposited charge, on Pt(111) the AFM measurements showed the formation of rounded nanometric particles of Ni, which rearranged and formed small triangular arrays at sufficiently low applied overpotential. This particle pattern was induced by the ⟨111⟩ orientation and related to surface sensitivity of the nickel deposition in DES. The present work provides deep insights into the Ni electrodeposition mechanism in the selected deep eutectic solvent.

Keywords: AFM, Deep eutectic solvent, Glassy carbon, Nanostructures, Nickel electrodeposition, Platinum electrode, Pt(111), SEM, Surface sensitive

Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2017). Onset and offset estimation of the neural inspiratory time in surface diaphragm electromyography: A pilot study in healthy subjects IEEE Journal of Biomedical and Health Informatics 22, (1), 67-76

This study evaluates the onset and offset of neural inspiratory time estimated from surface diaphragm electromyographic (EMGdi) recordings. EMGdi and airflow signals were recorded in ten healthy subjects according to two respiratory protocols based on respiratory rate (RR) increments, from 15 to 40 breaths per minute (bpm), and fractional inspiratory time (Ti/Ttot) decrements, from 0.54 to 0.18. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of neural respiratory drive (NRD). The EMGdi amplitude was estimated using the fixed sample entropy computed over a 250 ms moving window of the EMGdi signal (EMGdifse). The neural onset was detected through a dynamic threshold over the EMGdifse using the kernel density estimation method, while neural offset was detected by finding when the EMGdifse had decreased to 70 % of the peak value reached during inspiration. The Bland-Altman analysis between airflow and neural onsets showed a global bias of 46 ms in the RR protocol and 22 ms in the Ti/Ttot protocol. The Bland-Altman analysis between airflow and neural offsets reveals a global bias of 11 ms in the RR protocol and -2 ms in the Ti/Ttot protocol. The relationship between pairs of RR values (Pearson’s correlation coefficient of 0.99, Bland- Altman limits of -2.39 to 2.41 bpm, and mean bias of 0.01 bpm) and between pairs of Ti/Ttot values (Pearson’s correlation coefficient of 0.86, Bland-Altman limits of -0.11 to 0.10, and mean bias of -0.01) showed a good agreement. In conclusion, we propose a method for determining neural onset and neural offset based on non-invasive recordings of the electrical activity of the diaphragm that requires no filtering of cardiac muscle interference.

Keywords: Kernel density estimation (KDE),, Surface diaphragm electromyographic,, (EMGdi) signal,, Inspiratory time,, Neural respiratory drive (NRD),, Neural inspiratory time,, Fixed sample entropy (fSampEn)

Urbano, Jessica Julioti, da Palma, Renata Kelly, de Lima, Flávia Mafra, Fratini, Paula, Guimaraes, Leticia Lopes, Uriarte, Juan J., Alvarenga, Letícia Heineck, Miglino, Maria Angelica, Vieira, Rodolfo de Paula, Prates, Renato Araujo, Navajas, Daniel, Farré, Ramon, Oliveira, Luis Vicente Franco, (2017). Effects of two different decellularization routes on the mechanical properties of decellularized lungs PLoS ONE 12, (6), e0178696

Considering the limited number of available lung donors, lung bioengineering using whole lung scaffolds has been proposed as an alternative approach to obtain lungs suitable for transplantation. However, some decellularization protocols can cause alterations on the structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the aim of this study was to compare the acellular lung mechanical properties when using two different routes through the trachea and pulmonary artery for the decellularization process. This study was performed by using the lungs excised from 30 healthy male C57BL/6 mice, which were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG), and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodecyl sulfate. The behaviour of mechanical properties of the acellular lungs was measured after decellularization process. Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG showed reduced Est and Edyn elastances after lung decellularization. Scanning electron microscopy showed no structural changes after lung decellularization of the TDG and PDG. In conclusion, was demonstrated that there is no significant difference in the behaviour of mechanical properties and extracellular matrix of the decellularized lungs by using two different routes through the trachea and pulmonary artery.

Hindriks, Rikkert, Schmiedt, Joscha, Arsiwalla, Xerxes D., Peter, Alina, Verschure, Paul F. M. J., Fries, Pascal, Schmid, Michael C., Deco, Gustavo, (2017). Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays PLoS ONE 12, (12), e0187490

Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to “invert” a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.