Publications

by Keyword: (Micro)solid phase extraction


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Fresco-Cala, B., Jimenez-Soto, J. M., Cardenas, S., Valcarcel, M., (2014). Single-walled carbon nanohorns immobilized on a microporous hollow polypropylene fiber as a sorbent for the extraction of volatile organic compounds from water samples Microchimica Acta , 181, (9-10), 1117-1124

We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L-1 (excepted for toluene with 25 ng L-1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.

Keywords: (Micro)solid phase extraction, Nanotechnology, Oxidized single-walled carbon nanohorns, Volatiles compounds, Waters