Year 2019

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Pérez-González, Carlos, Alert, Ricard, Blanch-Mercader, Carles, Gómez-González, Manuel, Kolodziej, Tomasz, Bazellieres, Elsa, Casademunt, Jaume, Trepat, Xavier, (2019). Active wetting of epithelial tissues Nature Physics 15, 79-88

Development, regeneration and cancer involve drastic transitions in tissue morphology. In analogy with the behaviour of inert fluids, some of these transitions have been interpreted as wetting transitions. The validity and scope of this analogy are unclear, however, because the active cellular forces that drive tissue wetting have been neither measured nor theoretically accounted for. Here we show that the transition between two-dimensional epithelial monolayers and three-dimensional spheroidal aggregates can be understood as an active wetting transition whose physics differs fundamentally from that of passive wetting phenomena. By combining an active polar fluid model with measurements of physical forces as a function of tissue size, contractility, cell–cell and cell–substrate adhesion, and substrate stiffness, we show that the wetting transition results from the competition between traction forces and contractile intercellular stresses. This competition defines a new intrinsic length scale that gives rise to a critical size for the wetting transition in tissues, a striking feature that has no counterpart in classical wetting. Finally, we show that active shape fluctuations are dynamically amplified during tissue dewetting. Overall, we conclude that tissue spreading constitutes a prominent example of active wetting—a novel physical scenario that may explain morphological transitions during tissue morphogenesis and tumour progression.

Horteläo, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano Article ASAP

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting

Mestres, G., Fernandez-Yague, M. A., Pastorino, D., Montufar, E. B., Canal, C., Manzanares-Céspedes, M. C., Ginebra, M. P., (2019). In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments Materials Science and Engineering: C 97, 84-95

The purpose of the present work was to evaluate in vivo different antimicrobial therapies to eradicate osteomyelitis created in the femoral head of New Zealand rabbits. Five phosphate-based cements were evaluated: calcium phosphate cements (CPC) and calcium phosphate foams (CPF), both in their pristine form and loaded with doxycycline hyclate, and an intrinsic antimicrobial magnesium phosphate cement (MPC; not loaded with an antibiotic). The cements were implanted in a bone previously infected with Staphylococcus aureus to discern the effects of the type of antibiotic administration (systemic vs. local), porosity (microporosity, i.e. <5 μm vs. macroporosity, i.e. >5 μm) and type of antimicrobial mechanism (release of antibiotic vs. intrinsic antimicrobial activity) on the improvement of the health state of the infected animals. A new method was developed, with a more comprehensive composite score that integrates 5 parameters of bone infection, 4 parameters of bone structural integrity and 4 parameters of bone regeneration. This method was used to evaluate the health state of the infected animals, both before and after osteomyelitis treatment. The results showed that the composite score allows to discern statistically significant differences between treatments that individual evaluations were not able to identify. Despite none of the therapies completely eradicated the infection, it was observed that macroporous materials (CPF and CPFd, the latter loaded with doxycycline hyclate) and intrinsic antimicrobial MPC allowed a better containment of the osteomyelitis. This study provides novel insights to understand the effect of different antimicrobial therapies in vivo, and a promising comprehensive methodology to evaluate the health state of the animals was developed. We expect that the implementation of such methodology could improve the criteria to select a proper antimicrobial therapy.

Keywords: Calcium phosphate cements, Calcium phosphate foams, Drug delivery, In vivo, Magnesium phosphate cements, Osteomyelitis

Manconi, M., Manca, M. L., Escribano-Ferrer, E., Coma-Cros, E. M., Biosca, A., Lantero, E., Fernàndez-Busquets, X., Fadda, A. M., Caddeo, C., (2019). Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy International Journal of Pharmaceutics 556, 82-88

In this paper, nutriosomes (phospholipid vesicles associated with Nutriose® FM06) were modified to obtain new systems aimed at enhancing the efficacy of curcumin in counteracting malaria infection upon oral administration. Eudragit® L100, a pH-sensitive co-polymer, was added to these vesicles, thus obtaining eudragit-nutriosomes, to improve their in vivo performances. Liposomes without eudragit and nutriose were also prepared as a reference. Cryo-TEM images showed the formation of multicompartment vesicles, with mean diameter around 300 nm and highly negative zeta potential. Vesicles were stable in fluids mimicking the gastro-intestinal content due to the high phospholipid concentration and the presence of gastro-resistant eudragit and digestion-resistant nutriose. Eudragit-nutriosomes disclosed promising performances in vitro and in vivo: they maximized the ability of curcumin to counteract oxidative stress in intestinal cells (Caco-2), which presumably reinforced its systemic efficacy. Orally-administered curcumin-loaded eudragit-nutriosomes increased significantly the survival of malaria-infected mice relative to free curcumin-treated controls.

Keywords: Eudragit® L100, Nutriose® FM06, Nutriosomes, Curcumin, Oral administration, Malaria

Vidal, E., Buxadera-Palomero, J., Pierre, C., Manero, J. M., Ginebra, M. P., Cazalbou, S., Combes, C., Rupérez, E., Rodríguez, D., (2019). Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery Surface and Coatings Technology 358, 266-275

Metallic implants have some limitations related to bioactivity and bacteria colonization leading to infections. In this regard, calcium phosphate coatings can be used as carrier for drug delivery in order to improve the mentioned drawbacks. The present work proposes the introduction of an antibacterial agent in the course of a pulsed and reverse pulsed electrodeposition. Calcium phosphate coatings were prepared in 30 min using different pulse waveforms (unipolar-bipolar), current densities (2–5 mA/cm2) and temperatures (40–60 °C). Mechanical stability of the as-coated surfaces was studied in order to select the optimal electrodeposition conditions. Subsequently, selected coatings were loaded with an antiseptic agent, chlorhexidine digluconate (CHX), via a single-step co-deposition procedure. CHX concentration added to the electrolyte was adjusted to 3 mM based on the antibacterial efficacy of the loaded coatings evaluated in vitro with Staphylococcus aureus and Escherichia coli bacteria strains. Whereas the same chlorhexidine concentration was added to the electrolyte, results showed that the amount of CHX loaded was different for each condition while release kinetics was maintained. The results of this work demonstrate that a pulsed co-deposition strategy has great potential to modulate local delivery of antibacterial agents such as chlorhexidine digluconate, which may prevent early phase infections of metallic implants after insertion.

Keywords: Antibacterial agent, Calcium phosphate, Characterization, Coating, Pulse electrodeposition, Titanium