DONATE

Publications

by Keyword: Medical devices

Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321

Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia


Paéz Aviles, C. , Juanola-Feliu, E., Tahirbegi, I.B. , Mir, M., Gonzalez-Piñero, M., Samitier, J., (2015). Innovation and technology transfer of medical devices fosterd by cross disciplinary communities of practitioners International Journal of Innovation Management , 19, (6), 1540012

Commercialisation of emerging technological innovations such as medical devices can be a time-consuming and lengthy process resulting in a market entrance failure. To tackle this general problem, major challenges are being analysed, principally focusing on the role of Communities of Practitioners (CoPs) in the process of effective transfer of high-value emerging technologies from academia to market. Taking a case study approach, this document describes the role of a cross-disciplinary CoP in the technology transfer process within a convergence scenario. The case presented is a sensor array for ischemia detection developed by different practitioners from diverse organisations: university, research institution, hospital, and a scientific park. The analysis also involves the innovation ecosystem where all stakeholders are taken into account. This study contributes to a better understanding of the managerial implications of CoP fostering technology transfer and innovation, principally focused on the current need for new biomedical technologies and tools.

JTD Keywords: CoP, Medical devices, Innovation, Technology transfer, Ischemia


Govoni, Leonardo, Dellaca, Raffaele L., Penuelas, Oscar, Bellani, Giacomo, Artigas, Antonio, Ferrer, Miquel, Navajas, Daniel, Pedotti, Antonio, Farre, Ramon, (2012). Actual performance of mechanical ventilators in ICU: a multicentric quality control study Medical Devices: Evidence and Research , 5, 111-119

Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 36 (530-723) mL, expired tidal volume = 608 36 (530-728) mL, peak pressure = 20.8 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

JTD Keywords: Equipment and supplies, Medical devices, Intravenous, Quality assurance, Health care quality assessment, Ventilator accuracy, Ventilation error


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment