DONATE

Publications

by Keyword: SaOS-2

Canal, C., Fontelo, R., Hamouda, I., Guillem-Marti, J., Cvelbar, U., Ginebra, M. P., (2017). Plasma-induced selectivity in bone cancer cells death Free Radical Biology and Medicine , 110, 72-80

Background: Current therapies for bone cancers - either primary or metastatic – are difficult to implement and unfortunately not completely effective. An alternative therapy could be found in cold plasmas generated at atmospheric pressure which have already demonstrated selective anti-tumor action in a number of carcinomas and in more relatively rare brain tumors. However, its effects on bone cancer are still unknown. Methods: Herein, we employed an atmospheric pressure plasma jet (APPJ) to validate its selectivity towards osteosarcoma cell line vs. osteoblasts & human mesenchymal stem cells. Results: Cytotoxicity following direct interaction of APPJ with cells is comparable to indirect interaction when only liquid medium is treated and subsequently added to the cells, especially on the long-term (72 h of cell culture). Moreover, following contact of the APPJ treated medium with cells, delayed effects are observed which lead to 100% bone cancer cell death through apoptosis (decreased cell viability with incubation time in contact with APPJ treated medium from 24 h to 72 h), while healthy cells remain fully viable and unaffected by the treatment. Conclusions: The high efficiency of the indirect treatment indicates that an important role is played by the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the gaseous plasma stage and then transmitted to the liquid phase, which overall lead to lethal and selective action towards osteosarcoma cells. These findings open new pathways for treatment of metastatic bone disease with a minimally invasive approach.

JTD Keywords: Atmospheric pressure plasma jet, Bone cancer, hMSC, HOb, Liquids, Osteoblasts, Osteosarcoma, SaOS-2


Gustavsson, J., Planell, J., Engel, E., (2013). Ion-selective electrodes to monitor osteoblast-like cellular influence on the extracellular concentration of calcium Journal of Tissue Engineering and Regenerative Medicine 7, (8), 609-620

In bone tissue engineering, the composition of the ionic extracellular environment (IEE) can determine both cellular fate and a biomaterial's development and performance. Therefore, precise control of the IEE and a perfect understanding of the dynamic changes that it can be subject to due to cellular activity is highly desired. To achieve this, we initially monitored how two standard osteoblast-like cell models that expressed either high or low alkaline phosphatase activity - SAOS-2 and MG63 cells, respectively - affected the extracellular concentrations of calcium and phosphate during long-term cultures. It was observed that cellular influence on the IEE varied greatly between the two models and could be linked to the capacity of cells to deposit calcium in the extracellular matrix. Miniaturized ion-selective electrodes that could allow for real-time monitoring of calcium in a minimally invasive way were then constructed. The electrodes were characterized in standard in vitro cell culture environments, prior to being successfully applied for periods of 24h, to record the dynamics of cell-induced deposition of calcium in the extracellular matrix, while using osteogenic media of either high or low concentrations of phosphate. As a result, this study provides the background and technological means for the non-destructive evaluation of the IEE in vitro and allows for the optimization and development of better models of bone tissue construction.

JTD Keywords: Extracellular ions, Ion-selective electrode, MG63, Mineralization, Osteoblasts, Saos-2, Sensor, Tissue engineering


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite Journal of Materials Science-Materials in Medicine , 23, (10), 2509-2520

Solution-mediated reactions due to ionic substitutions are increasingly explored as a strategy to improve the biological performance of calcium phosphate-based materials. Yet, cellular response to well-defined dynamic changes of the ionic extracellular environment has so far not been carefully studied in a biomaterials context. In this work, we present kinetic data on how osteoblast-like SAOS-2 cellular activity and calcium-deficient hydroxyapatite (CDHA) influenced extracellular pH as well as extracellular concentrations of calcium and phosphate in standard in vitro conditions. Since cells were grown on membranes permeable to ions and proteins, they could share the same aqueous environment with CDHA, but still be physically separated from the material. In such culture conditions, it was observed that gradual material-induced adsorption of calcium and phosphate from the medium had only minor influence on cellular proliferation and alkaline phosphatase activity, but that competition for calcium and phosphate between cells and the biomaterial delayed and reduced significantly the cellular capacity to deposit calcium in the extracellular matrix. The presented work thus gives insights into how and to what extent solution-mediated reactions can influence cellular response, and this will be necessary to take into account when interpreting CDHA performance both in vitro and in vivo.

JTD Keywords: Alkaline-phosphatase activity, Saos-2 cells, In-vitro, bone mineralization, Biological basis, Differentiation, Culture, Matrix, Proliferation, Topography