Publications

by Keyword: Arthritis


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Matera, C., Gomila, A. M. J., Camarero, N., Libergoli, M., Soler, C., Gorostiza, P., (2019). Photochromic antifolate for light-activated chemotherapy Proceedings of SPIE 17th International Photodynamic Association World Congress , SPIE (Cambridge, USA) 11070, 110709H

Although cytotoxic chemotherapy is one of the primary pharmacological treatments for chronic hyperproliferative diseases such as cancer and psoriasis, its efficacy and tolerability are in many cases dramatically limited by off-target toxicity. A promising approach to improve these therapies is to activate the drugs exclusively at their desired place of action. In fact, in those diseases that would benefit from a highly localized treatment, a precise spatiotemporal control over the activity of a chemotherapeutic agent would allow reducing the concentration of active compound outside the targeted region, improving the tolerability of the treatment. Light is a powerful tool in this respect: it offers unparalleled opportunities as a non-invasive regulatory signal for pharmacological applications because it can be delivered with high precision regarding space, time, intensity and wavelength. Photopharmacology represents a new and emerging approach in this regard since the energy of light is used to change the structure of the drug and hence to switch its pharmacological activity on and off on demand. We describe here phototrexate, the first light-regulated inhibitor of the human DHFR. Enzyme and cell viability assays demonstrated that phototrexate behaves as a potent antifolate in its cis configuration, obtained under UVA illumination, and that it is nearly inactive in its dark-relaxed trans form. Experiments in zebrafish confirmed that phototrexate can disrupt folate metabolism in a light-dependent fashion also in vivo. Overall, phototrexate represents a potential candidate towards the development of an innovative photoactivated antifolate chemotherapy.

Keywords: Cancer, Dermatology, Methotrexate, Photoactivated chemotherapy, Photodynamic therapy, Phototherapy, Psoriasis, Rheumatoid arthritis


Matera, Carlo, Gomila-Juaneda, Alexandre, Camarero, Núria, Libergoli, Michela, Soler, Concepció, Gorostiza, Pau, (2018). A photoswitchable antimetabolite for targeted photoactivated chemotherapy Journal of the American Chemical Society 140, (46), 15764-15773

The efficacy and tolerability of systemically administered anticancer agents are limited by their off-target effects. Precise spatiotemporal control over their cytotoxic activity would allow improving chemotherapy treatments, and light-regulated drugs are well suited to this purpose. We have developed phototrexate, the first photoswitchable inhibitor of the human dihydrofolate reductase (DHFR), as a photochromic analog of methotrexate, a widely prescribed chemotherapeutic drug to treat cancer and psoriasis. Quantification of the light-regulated DHFR enzymatic activity, cell proliferation, and in vivo effects in zebrafish show that phototrexate behaves as a potent antifolate in its photoactivated cis configuration, and that it is nearly inactive in its dark-relaxed trans form. Thus, phototrexate constitutes a proof-of-concept to design light-regulated cytotoxic small molecules, and a step forward to develop targeted anticancer photochemotherapies with localized efficacy and reduced adverse effects.

Keywords: Photopharmacology, Photodynamic therapy, Antiproliferative, Arthritis, Psoriasis, Nanomedicine


Sánchez Egea, Antonio J., Valera, Marius, Parraga Quiroga, Juan Manuel, Proubasta, Ignasi, Noailly, J., Lacroix, Damien, (2014). Impact of hip anatomical variations on the cartilage stress: A finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects Clinical Biomechanics , 29, (4), 444-450

AbstractBackground Hip arthritis is a pathology linked to hip-cartilage degeneration. Although the aetiology of this disease is not well defined, it is known that age is a determinant risk factor. However, hip arthritis in young patients could be largely promoted by biomechanical factors. The objective of this paper is to analyze the impact of some normal anatomical variations on the cartilage stress distributions numerically predicted at the hip joint during walking. Methods A three-dimensional finite element model of the femur and the pelvis with the most relevant axial components of muscle forces was used to simulate normal walking activity. The hip anatomical condition was defined by: neck shaft angle, femoral anteversion angle, and acetabular anteversion angle with a range of 110-130º, 0-20º, and 0-20º, respectively. The direct boundary method was used to simulate the hip contact. Findings The hydrostatic stress found at the cartilage and labrum showed that a ± 10º variation with respect to the reference brings significant differences between the anatomic models. Acetabular anteversion angle of 0º and femoral anteversion angle of 0º were the most affected anatomical conditions with values of hydrostatic stress in the cartilage near 5 MPa under compression. Interpretation Cartilage stresses and contact areas were equivalent to the results found in literature and the most critical anatomical regions in terms of tissue loads were in a good accordance with clinical evidence. Altogether, results showed that decreasing femoral or acetabular anteversion angles isolately causes a dramatic increase in cartilage loads.

Keywords: Hip arthritis, Neck shaft angle, Femoral and acetabular anteversions, Cartilage load, Hip joint contact, Finite element analysis