Publications

by Keyword: BMI


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Praktiknjo, M., Djayadi, N., Mohr, R., Schierwagen, R., Bischoff, J., Dold, L., Pohlmann, A., Schwarze-Zander, C., Wasmuth, J. C., Boesecke, C., Rockstroh, J. K., Trebicka, J., (2019). Fibroblast growth factor 21 is independently associated with severe hepatic steatosis in non-obese HIV-infected patients Liver International 39, (8), 1514-1520

Background: Severe hepatic steatosis shows a high prevalence and contributes to morbidity and mortality in human immunodeficiency virus (HIV) infected patients. Known risk factors include obesity, dyslipidaemia and features of metabolic syndrome. Fibroblast growth factor 21 (FGF-21) is involved with hepatic glucose and lipid metabolism. This study aimed to evaluate FGF-21 as a biomarker for severe hepatic steatosis in non-obese HIV-infected patients. Methods: This is a prospective, cross-sectional, monocentric study including HIV-infected out-patients. Hepatic steatosis was measured via controlled attenuation parameter (CAP) using FibroScan 502 touch (ECHOSENS, France). Severe hepatic steatosis was defined at CAP ≥ 253 dB/m. Peripheral blood samples were collected and plasma was analysed for FGF-21. Demographic and clinical characteristics were collected from patient's health records. Results: In total, 73 non-obese HIV-monoinfected patients were included in this study. Prevalence of severe hepatic steatosis was 41%. Patients with severe hepatic steatosis showed significantly higher levels of FGF-21. Univariate analysis revealed FGF-21, BMI, hyperlipidaemia, ALT levels and arterial hypertension as significant, while multivariate analysis showed only FGF-21, arterial hypertension and ALT levels as significant independent risk factors for severe hepatic steatosis. Conclusion: This study presents FGF-21 as an independent and stronger predictor of severe hepatic steatosis than blood lipids in HIV-infected patients. Moreover, arterial hypertension and ALT levels predict severe steatosis even in non-obese HIV-monoinfected patients. Furthermore, this study supports existing metabolic risk factors and expands them to non-obese HIV-infected patients.

Keywords: BMI, CAP, Dyslipidaemia, FGF-21, Fibroscan, HIV, Hyperlipidaemia, Liver, NAFLD, NASH, Steatosis


Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology , 9, (11), 6478-6482

Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.

Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication