Publications

by Keyword: Band-pass filters


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Camara, M. A., Castillo, Y., Blanco-Almazan, D., Estrada, L., Jane, R., (2017). MHealth tools for monitoring Obstructive Sleep Apnea patients at home: Proof-of-concept Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1555-1558

Obstructive Sleep Apnea (OSA) is a sleep disorder that affects mainly the adult and elderly population. Due to the high percentage of patients who remain undiagnosed and untreated because of limitations of current diagnosis methods, the management of OSA is an important social, scientific and economic problem that will be difficult to be assumed by health systems. On the other hand, smartphone platforms (mHealth systems) are being considered as an innovative solution, thanks to the integration of the essential sensors to obtain clinically relevant parameters in the same device or in combination with wireless wearable devices.

Keywords: Sleep apnea, Microphones, Monitoring, Sensors, Accelerometers, Biomedical monitoring, Band-pass filters


Sola-Soler, J., Giraldo, B. F., Fiz, J. A., Jané, R., (2015). Cardiorespiratory Phase Synchronization in OSA subjects during wake and sleep states Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 7708-7711

Cardiorespiratory Phase Synchronization (CRPS) is a manifestation of coupling between cardiac and respiratory systems complementary to Respiratory Sinus Arrhythmia. In this work, we investigated CRPS during wake and sleep stages in Polysomnographic (PSG) recordings of 30 subjects suspected from Obstructive Sleep Apnea (OSA). The population was classified into three severity groups according to the Apnea Hypopnea Index (AHI): G1 (AHI<;15), G2 (15<;=AHI<;30) and G3 (AHI>30). The synchrogram between single lead ECG and respiratory abdominal band signals from PSG was computed with the Hilbert transform technique. The different phase locking ratios (PLR) m:n were monitored throughout the night. Ratio 4:1 was the most frequent and it became more dominant as OSA severity increased. CRPS was characterized by the percentage of synchronized time (%Sync) and the average duration of synchronized epochs (AvDurSync) using three different thresholds. Globally, we observed that %Sync significantly decreased and AvDurSync slightly increased with OSA severity. A high synchronization threshold enhanced these population differences. %Sync was significantly higher in NREM than in REM sleep in G2 and G3 groups. Population differences observed during sleep did not translate to the initial wake state. Reduced CRPS could be an early marker of OSA severity during sleep, but further studies are needed to determine whether CRPS is also present during wakefulness.

Keywords: Band-pass filters, Electrocardiography, Heart beat, Sleep apnea, Sociology, Statistics, Synchronization


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2015). EMG-derived respiration signal using the fixed sample entropy during an Inspiratory load protocol Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 1703-1706

Extracting clinical information from one single measurement represents a step forward in the assessment of the respiratory muscle function. This attracting idea entails the reduction of the instrumentation and fosters to develop new medical integrated technologies. We present the use of the fixed sample entropy (fSampEn) as a more direct method to non-invasively derive the breathing activity from the diaphragm electromyographic (EMGdi) signal, and thus to extract the respiratory rate, an important vital sign which is cumbersome and time-consuming to be measured by clinicians. fSampEn is a method to evaluate the EMGdi activity that is less sensitive to the cardiac activity (ECG) and its application has proven to be useful to evaluate the load of the respiratory muscles. The behavior of the proposed method was tested in signals from two subjects that performed an inspiratory load protocol, which consists of increments in the inspiratory mouth pressure (Pmouth). Two respiratory signals were derived and compared to the Pmouth signal: the ECG-derived respiration (EDR) signal from the lead-I configuration, and the EMG-derived respiration (EMGDR) signal by applying the fSampEn method over the EMGdi signal. The similitude and the lag between signals were calculated through the cross-correlation between each derived respiratory signal and the Pmouth. The EMGDR signal showed higher correlation and lower lag values (≥ 0.91 and ≤ 0.70 s, respectively) than the EDR signal (≥ 0.83 and ≤0.99 s, respectively). Additionally, the respiratory rate was estimated with the Pmouth, EDR and EMGDR signals showing very similar values. The results from this preliminary work suggest that the fSampEn method can be used to derive the respiration waveform from the respiratory muscle electrical activity.

Keywords: Band-pass filters, Electrocardiography, Electromyography, Entropy, Mouth, Muscles, Protocols


Estrada, L., Torres, A., Sarlabous, L., Fiz, J. A., Jané, R., (2014). Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3204-3207

Non-invasive evaluation of respiratory activity is an area of increasing research interest, resulting in the appearance of new monitoring techniques, ones of these being based on the analysis of the diaphragm mechanomyographic (MMGdi) signal. The MMGdi signal can be decomposed into two parts: (1) a high frequency activity corresponding to lateral vibration of respiratory muscles, and (2) a low frequency activity related to excursion of the thoracic cage. The purpose of this study was to apply the empirical mode decomposition (EMD) method to obtain the low frequency of MMGdi signal and selecting the intrinsic mode functions related to the respiratory movement. With this intention, MMGdi signals were acquired from a healthy subject, during an incremental load respiratory test, by means of two capacitive accelerometers located at left and right sides of rib cage. Subsequently, both signals were combined to obtain a new signal which contains the contribution of both sides of thoracic cage. Respiratory rate (RR) measured from the mechanical activity (RRMmg) was compared with that measured from inspiratory pressure signal (RRP). Results showed a Pearson's correlation coefficient (r = 0.87) and a good agreement (mean bias = -0.21 with lower and upper limits of -2.33 and 1.89 breaths per minute, respectively) between RRmmg and RRP measurements. In conclusion, this study suggests that RR can be estimated using EMD for extracting respiratory movement from low mechanical activity, during an inspiratory test protocol.

Keywords: Accelerometers, Band-pass filters, Biomedical measurement, Empirical mode decomposition, Estimation, IP networks, Muscles