by Keyword: Biodegradable

By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Pérez-Madrigal, M. M., Giannotti, M. I., Del Valle, L. J., Franco, L., Armelin, E., Puiggalí, J., Sanz, F., Alemán, C., (2014). Thermoplastic polyurethane:polythiophene nanomembranes for biomedical and biotechnological applications ACS Applied Materials and Interfaces 6, (12), 9719-9732

Nanomembranes have been prepared by spin-coating mixtures of a polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU) using 20:80, 40:60, and 60:40 TPU:P3TMA weight ratios. After structural, topographical, electrochemical, and thermal characterization, properties typically related with biomedical applications have been investigated: swelling, resistance to both hydrolytic and enzymatic degradation, biocompatibility, and adsorption of type I collagen, which is an extra cellular matrix protein that binds fibronectin favoring cell adhesion processes. The swelling ability and the hydrolytic and enzymatic degradability of TPU:P3TMA membranes increases with the concentration of P3TMA. Moreover, the degradation of the blends is considerably promoted by the presence of enzymes in the hydrolytic medium, TPU:P3TMA blends behaving as biodegradable materials. On the other hand, TPU:P3TMA nanomembranes behave as bioactive platforms stimulating cell adhesion and, especially, cell viability. Type I collagen adsorption largely depends on the substrate employed to support the nanomembrane, whereas it is practically independent of the chemical nature of the polymeric material used to fabricate the nanomembrane. However, detailed microscopy study of the morphology and topography of adsorbed collagen evidence the formation of different organizations, which range from fibrils to pseudoregular honeycomb networks depending on the composition of the nanomembrane that is in contact with the protein. Scaffolds made of electroactive TPU:P3TMA nanomembranes are potential candidates for tissue engineering biomedical applications.

Keywords: Bioactive platform, Biodegradable blend, Collaged adsorption, Scaffolds, Tissue engineering, Ultrathin films

Sachot, N., Engel, E., Castaño, O., (2014). Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies Current Organic Chemistry 18, (18), 2299-2314

The introduction of hybrid materials in regenerative medicine has solved some problems related to the mechanical and bioactive properties of biomaterials. Calcium phosphates and their derivatives have provided the basis for inorganic components, thanks to their good bioactivity, especially in bone regeneration. When mixed with biodegradable polymers, the result is a synergic association that mimics the composition of many tissues of the human body and, additionally, exhibits suitable mechanical properties. Together with the development of nanotechnology and new synthesis methods, hybrids offer a promising option for the development of a third or fourth generation of smart biomaterials and scaffolds to guide the regeneration of natural tissues, with an optimum efficiency/cost ratio. Their potential bioactivity, as well as other valuable features of hybrids, open promising new pathways for their use in bone regeneration and other tissue repair therapies. This review provides a comprehensive overview of the different hybrid organic-inorganic scaffolding biomaterials developed so far for regenerative therapies, especially in bone. It also looks at the potential for research into hybrid materials for other, softer tissues, which is still at an initial stage, but with very promising results.

Keywords: Biodegradable polymer, Hybrid materials, Nanoparticles, Ormoglass

Serra, T., Planell, J. A., Navarro, M., (2013). High-resolution PLA-based composite scaffolds via 3-D printing technology Acta Biomaterialia 9, (3), 5521-5530

Fabrication of new biodegradable scaffolds that guide and stimulate tissue regeneration is still a major issue in tissue engineering approaches. Scaffolds that possess adequate biodegradability, pore size, interconnectivity, bioactivity and mechanical properties in accordance with the injured tissue are required. This work aimed to develop and characterize three-dimensional (3-D) scaffolds that fulfill the aforementioned requirements. For this, a nozzle-based rapid prototyping system was used to combine polylactic acid and a bioactive CaP glass to fabricate 3-D biodegradable scaffolds with two patterns (orthogonal and displaced double layer). Scanning electron microscopy and micro-computer tomography showed that 3-D scaffolds had completely interconnected porosity, uniform distribution of the glass particles, and a controlled and repetitive architecture. Surface properties were also assessed, showing that the incorporation of glass particles increased both the roughness and the hydrophilicity of the scaffolds. Mechanical tests indicated that compression strength is dependent on the scaffold geometry and the presence of glass. Preliminary cell response was studied with primary mesenchymal stem cells (MSC) and revealed that CaP glass improved cell adhesion. Overall, the results showed the suitability of the technique/materials combination to develop 3-D porous scaffolds and their initial biocompatibility, both being valuable characteristics for tissue engineering applications.

Keywords: Rapid prototyping, Scaffold, Polylactic acid, Biodegradable, Composite

Levato, Riccardo, Mateos-Timoneda, Miguel A., Planell, Josep A., (2012). Preparation of biodegradable polylactide microparticles via a biocompatible procedure Macromolecular Bioscience 12, (4), 557-566

PLA MPs are prepared via a novel and toxic-chemical-free fabrication route using ethyl lactate, a green solvent and FDA-approved aroma. MPs are obtained by a solution jet break-up and solvent displacement method. Adjusting flow parameters allows the tuning of MPs size between 60 and 180 µm, with reduced polydispersity. Morphological analysis shows microporous particles with Janus-like surface. A fluorophore is successfully loaded into the MPs during their formation step. This versatile green solvent-based procedure is proven to be suitable for drug encapsulation and delivery applications. The method may be extended to different droplet generation techniques.

Keywords: Biocompatibility, Biodegradable, Green solvents, Microparticles, Poly(lactic acid)

Serra, T., Navarro, M., Planell, J. A., (2012). Fabrication and characterization of biodegradable composite scaffolds for tissue engineering Innovative Developments in Virtual and Physical Prototyping 5th International Conference on Advanced Research and Rapid Prototyping (ed. Margarida, T., Ferreira, D.), Taylor & Francis (Leiria, Portugal) VR@P, 67-72

In this study, polylactic acid (PLA) and polyethylene glycol (PEG) were combined with soluble CaP glass particles and processed by rapid prototyping to obtain fully biodegradable structures for Tissue Engineering applications. The obtained 3D biodegradable structures were characterized in terms of their architecture and mechanical properties. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using Scanning Electron Microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. Well defined structures with pore size of 350-400μm (in the axial view), struts width of approximately 70-80μm, and a porosity ranging between 60-65% were obtained. The combination RP and PLA/PEG/CaP glass turned into promising fully degradable, mechanically stable, bioactive and biocompatible composite scaffolds for TE.

Keywords: Axial view, Biodegradable composites, Composite scaffolds, Glass particles, Mechanically stable, Micro architectures, Micro computed tomography (micro-CT), Poly lactic acid, Scaffold morphology, Tissue engineering applications, Well-defined structures, Bioactive glass, Mechanical properties, Mechanical testing, Polyethylene glycols, Polymer blends, Rapid prototyping, Scaffolds (biology), Scanning electron microscopy, Computerized tomography

Mateos-Timoneda, M. A., (2009). Polymers for bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Ultra high molecular weight polyethylene (UHMWPE), Acrylic polymers as bone cement, Biodegradable polymers

Navarro, M., Michiardi, A., Castano, O., Planell, J. A., (2008). Biomaterials in orthopaedics Journal of The Royal Society Interface Journal of the Royal Society Interface , 5, (27), 1137-1158

At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.

Keywords: Biomaterials, Orthopaedics, Tissue engineering, Bioactive materials, Biodegradable materials, Bioinert materials

Charles-Harris, M., del Valle, S., Hentges, E., Bleuet, P., Lacroix, D., Planell, J. A., (2007). Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds Biomaterials 28, (30), 4429-4438

This study involves the mechanical and structural characterisation of completely degradable scaffolds for tissue engineering applications. The scaffolds are a composite of polylactic acid (PLA) and a soluble calcium phosphate glass, and are thus completely degradable. A factorial experimental design was applied to optimise scaffold composition prior to simultaneous microtomography and micromechanical testing. Synchrotron X-ray microtomography combined with in situ micromechanical testing was performed to obtain three-dimensional 3D images of the scaffolds under compression. The 3D reconstruction was converted into a finite element mesh which was validated by simulating a compression test and comparing it with experimental results. The experimental design reveals that larger glass particle and pore sizes reduce the stiffness of the scaffolds, and that the porosity is largely unaffected by changes in pore sizes or glass weight content. The porosity ranges between 93% and 96.5%, and the stiffness ranges between 50 and 200 kPa. X-ray projections show a homogeneous distribution of the glass particles within the PLA matrix, and illustrate pore-wall breakage under strain. The 3D reconstructions are used qualitatively to visualise the distribution of the phases of the composite material, and to follow pore deformation under compression. Quantitatively, scaffold porosity, pore interconnectivity and surface/volume ratios have been calculated. Finite element analysis revealed the stress and strain distribution in the scaffold under compression, and could be used in the future to characterise the mechanical properties of the scaffolds.

Keywords: Synchrotron x-ray microtomography, Mechanical test, Biodegradable, Glass, Scaffold, Finite element analysis