Publications

by Keyword: Bioelectronics


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Pérez, Judit, Dulay, Samuel, Mir, M., Samitier, Josep, (2018). Molecular architecture for DNA wiring Biosensors and Bioelectronics , 121, 54-61

Detection of the hybridisation events is of great importance in many different biotechnology applications such as diagnosis, computing, molecular bioelectronics, and among others. However, one important drawback is the low current of some redox reporters that limits their application. This paper demonstrates the powerful features of molecular wires, in particular the case of S-[4-[2-[4-(2-Phenylethynyl)phenyl]ethynyl]phenyl] thiol molecule and the key role that play the nanometric design of the capture probe linkers to achieve an efficient couple of the DNA complementary ferrocene label with the molecular wire for an effective electron transfer in co-immobilised self-assembled monolayers (SAMs) for DNA hybridisation detection. In this article, the length of the linker capture probe was studied for electron transfer enhancement from the ferrocene-motifs of immobilised molecules towards the electrode surface to obtain higher kinetics in the presence of thiolated molecular wires. The use of the right couple of capture probe linker and molecular wire has found to be beneficial as it helps to amplify eightfold the signal obtained.

Keywords: DNA hybridisation, Bioelectronics, Electron transfer rate constant, Molecular wires, Electrochemistry, Ferrocene, Biosensor


Zaffino, R. L., Mir, M., Samitier, J., (2017). Oligonucleotide probes functionalization of nanogap electrodes Electrophoresis , 38, (21), 2712-2720

Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications.

Keywords: Biosensor bioelectronics, DNA electrophoresis, Nanogap electrodes, Self-assembled monolayers, Site-selective deposition


Artés, Juan M., López-Martínez, Montserrat, Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2014). Conductance switching in single wired redox proteins Small , 10, (13), 2537-2541

Switching events in the current flowing through individual redox proteins, (azurin) spontaneously wired between two electrodes, are studied using an electrochemical scanning tunneling microscope (ECSTM). These switching events in the current–time trace are characterized using conductance histograms, and reflect the intrinsic redox thermodynamic dispersion in the azurin population. This conductance switching may pose limitations to miniaturizing redox protein-based devices.

Keywords: Bioelectronics, Protein transistors, Molecular junctions, Switches, STM


Colomer-Farrarons, Jordi , Miribel-Català, Pedro Luís, Samitier, Josep , (2011). Low-voltage µpower CMOS subcutaneous biomedical implantable device for true/false applications Biomedical Engineering IASTED International Conference Biomedical Engineering (Biomed 2011) (ed. Baumgartner, C.), ACTA Press (Innsbruck, Austria) Biomedical Engineering, 424-428

A ±1.2V / 350μW integrated front-end architecture for a true/false in-vivo subcutaneous detection device is presented. The detection is focused on using three electrodes amperometric sensors. The powering and AM transcutaneous communication are based on an inductively coupled link working at 13.56 MHz. A prototype device (5.5 mm x 29.5 mm) has been implemented and fully validated.

Keywords: Implantable Device, Front-End architecture, Bioelectronics, Microelectronics Design, Biosensors