by Keyword: Biology

By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott, T. J., Demiris, Y., Dominey, P. F., Verschure, P. F. M. J., (2018). DAC-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self IEEE Transactions on Cognitive and Developmental Systems in press

This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.

Keywords: Autobiographical Memory., Biology, Cognition, Cognitive Robotics, Computer architecture, Distributed Adaptive Control, Grounding, Human-Robot Interaction, Humanoid robots, Robot sensing systems, Symbol Grounding

Crespo, A., Gavaldà, J., Julián, E., Torrents, E., (2017). A single point mutation in class III ribonucleotide reductase promoter renders Pseudomonas aeruginosa PAO1 inefficient for anaerobic growth and infection Scientific Reports 7, (1), 13350

Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzyme that is essential for its cell division is the ribonucleotide reductase (RNR) enzyme that supplies the deoxynucleotides required for DNA synthesis and repair. P. aeruginosa is one of the few microorganisms that encodes three different RNR classes (Ia, II and III) in its genome, enabling it to grow and adapt to diverse environmental conditions, including during infection. In this work, we demonstrate that a lack of RNR activity induces cell elongation in P. aeruginosa PAO1. Moreover, RNR gene expression during anaerobiosis differs among P. aeruginosa strains, with class III highly expressed in P. aeruginosa clinical isolates relative to the laboratory P. aeruginosa PAO1 strain. A single point mutation was identified in the P. aeruginosa PAO1 strain class III RNR promoter region that disrupts its anaerobic transcription by the Dnr regulator. An engineered strain that induces the class III RNR expression allows P. aeruginosa PAO1 anaerobic growth and increases its virulence to resemble that of clinical strains. Our results demonstrate that P. aeruginosa PAO1 is adapted to laboratory conditions and is not the best reference strain for anaerobic or infection studies.

Keywords: Bacterial genes, Cellular microbiology, Pathogens

Marsal, Maria, Jorba, Ignasi, Rebollo, Elena, Luque, Tomas, Navajas, Daniel, Martín-Blanco, Enrique, (2017). AFM and microrheology in the zebrafish embryo yolk cell Journal of Visualized Experiments Developmental Biology, (129), e56224

Elucidating the factors that direct the spatio-temporal organization of evolving tissues is one of the primary purposes in the study of development. Various propositions claim to have been important contributions to the understanding of the mechanical properties of cells and tissues in their spatiotemporal organization in different developmental and morphogenetic processes. However, due to the lack of reliable and accessible tools to measure material properties and tensional parameters in vivo, validating these hypotheses has been difficult. Here we present methods employing atomic force microscopy (AFM) and particle tracking with the aim of quantifying the mechanical properties of the intact zebrafish embryo yolk cell during epiboly. Epiboly is an early conserved developmental process whose study is facilitated by the transparency of the embryo. These methods are simple to implement, reliable, and widely applicable since they overcome intrusive interventions that could affect tissue mechanics. A simple strategy was applied for the mounting of specimens, AFM recording, and nanoparticle injections and tracking. This approach makes these methods easily adaptable to other developmental times or organisms.

Keywords: Developmental Biology, Zebrafish, Yolk, Atomic Force Microscopy, Cortical Tension, Microrheology, Nanoparticle tracking

Ladoux, B., Mège, R. M., Trepat, X., (2016). Front-rear polarization by mechanical cues: From single cells to tissues Trends in Cell Biology 26, (6), 420-433

Directed cell migration is a complex process that involves front-rear polarization, characterized by cell adhesion and cytoskeleton-based protrusion, retraction, and contraction of either a single cell or a cell collective. Single cell polarization depends on a variety of mechanochemical signals including external adhesive cues, substrate stiffness, and confinement. In cell ensembles, coordinated polarization of migrating tissues results not only from the application of traction forces on the extracellular matrix but also from the transmission of mechanical stress through intercellular junctions. We focus here on the impact of mechanical cues on the establishment and maintenance of front-rear polarization from single cell to collective cell behaviors through local or large-scale mechanisms.

Keywords: Cell forces, Cell polarity, Collective cell migration, Mechanobiology, Micropatterning, Substrate stiffness

Fernández-Remolar, D. C., Santamaría, J., Amils, R., Parro, V., Gómez-Ortíz, D., Izawa, M. R. M., Banerjee, N. R., Pérez-Rodríguez', R., Rodríguez, N., López-Martínez, N., (2015). Formation of iron-rich shelled structures by microbial communities Journal of Geophysical Research: Biogeosciences 120, (1), 147-168

In this paper, we describe the discovery and characterization of shelled structures that occur inside galleries of Pyrenees mines. The structures are formed by the mineralization of iron and zinc oxides, dominantly franklinite (ZnFe2O4) and poorly ordered goethite (α-FeO(OH)). Subsurface oxidation and hydration of polymetallic sulfide orebodies produce solutions rich in dissolved metal cations including Fe2+/3+ and Zn2+. The microbially precipitated shell-like structure grows by lateral or vertical stacking of thin laminae of iron oxide particles which are accreted mostly by fungal filaments. The resulting structures are composed of randomly oriented aggregates of needle-like, uniform-sized crystals, suggesting some biological control in the structure formation. Such structures are formed by the integration of two separated shells, following a complex process driven likely by different strategies of fungal microorganisms that produced the complex macrostructure.

Keywords: Geobiology, Iron oxides, Microbial mineralization

Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)

Malandrino, Andrea, Lacroix, Damien, Hellmich, Christian, Ito, Keita, Ferguson, Stephen J., Noailly, J., (2014). The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc Osteoarthritis and Cartilage 22, (7), 1053-1060

Objective To investigate the relevance of the human vertebral endplate poromechanics on the fluid and metabolic transport from and to the intervertebral disc (IVD) based on educated estimations of the poromechanical parameter values of the bony endplate (BEP). Methods 50 micro-models of different BEP samples were generated from

Keywords: Bony endplate, Spine mechanobiology, Intervertebral disc metabolites, Hydraulic Permeability, Bone Porosity, Poromechanics

Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly( Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning

Pérez-Amodio, Soledad, Engel, Elisabeth, (2014). Bone biology and Regeneration Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 315-342

Each bone of the skeleton constantly undergoes modeling during life to help it to adapt to changing biomechanical forces as well as remodeling to remove old bone and replace it with new, mechanically stronger bone to help preserve bone strength. Bone remodeling involves the removal of mineralized bone by osteoclasts, followed by the formation of bone matrix through the osteoblasts that subsequently become mineralized. All these assets make bone a suitable model for regeneration. Bone tissue can be grossly divided into inorganic mineral material (mostly HA), and organic material from cells and the extracellular matrix. This chapter outlines some of the bone diseases such as osteoporosis and Paget's disease. Bone can be considered as a biphasic composite material, with two phases: one the mineral and the other collagen. This combination confers better mechanical properties on the tissue than each component itself.

Keywords: Bone biology, Bone cells, Bone diseases, Bone extracellular matrix, Bone mechanics, Bone remodeling, Bone tissue regeneration, Skeleton

Noailly, J., Malandrino, A., Galbusera, F., Jin, Zhongmin, (2014). Computational modelling of spinal implants Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System (ed. Jin, Z.), Woodhead Publishing (Cambridge, UK) Biomaterials and Tissues, 447-484

This chapter focuses on the use of the finite element method in the design and exploration of spinal implants. Following an introduction to biomechanical alterations of the spine in disease and to spine finite element modelling, focus is placed on different models developed for spine treatment simulations. Despite the hindrance of working thorough representations of in vivo situations, predictions of load transfer within both the implants and the tissues simulated allow improved interpretations of known clinical outcomes, and permit the educated design of new implants. The potential of probabilistic modelling is also discussed in relation to model validation and patient-specific analyses. Finally, the latest developments in the multiphysical modelling of intervertebral discs are presented, revealing a strong potential for the study of implant-based strategies that aim to restore the functional biophysics of the spine.

Keywords: Spinal implant, Finite element modelling, Spine surgery, Spine biomechanics, Tissue mechanobiology

Gil, V., Del Río, J. A., (2012). Analysis of axonal growth and cell migration in 3D hydrogel cultures of embryonic mouse CNS tissue Nature Protocols 7, (2), 268-280

This protocol uses rat tail-derived type I collagen hydrogels to analyze key processes in developmental neurobiology, such as chemorepulsion and chemoattraction. The method is based on culturing small pieces of brain tissue from embryonic or early perinatal mice inside a 3D hydrogel formed by rat tail-derived type I collagen or, alternatively, by commercial Matrigel. The neural tissue is placed in the hydrogel with other brain tissue pieces or cell aggregates genetically modified to secrete a particular molecule that can generate a gradient inside the hydrogel. The present method is uncomplicated and generally reproducible, and only a few specific details need to be considered during its preparation. Moreover, the degree and behavior of axonal growth or neural migration can be observed directly using phase-contrast, fluorescence microscopy or immunocytochemical methods. This protocol can be carried out in 4 weeks.

Keywords: Cell biology, Cell culture, Developmental biology, Imaging, Model organisms, Neuroscience, Tissue culture

Serra, T., Navarro, M., Planell, J. A., (2012). Fabrication and characterization of biodegradable composite scaffolds for tissue engineering Innovative Developments in Virtual and Physical Prototyping 5th International Conference on Advanced Research and Rapid Prototyping (ed. Margarida, T., Ferreira, D.), Taylor & Francis (Leiria, Portugal) VR@P, 67-72

In this study, polylactic acid (PLA) and polyethylene glycol (PEG) were combined with soluble CaP glass particles and processed by rapid prototyping to obtain fully biodegradable structures for Tissue Engineering applications. The obtained 3D biodegradable structures were characterized in terms of their architecture and mechanical properties. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using Scanning Electron Microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. Well defined structures with pore size of 350-400μm (in the axial view), struts width of approximately 70-80μm, and a porosity ranging between 60-65% were obtained. The combination RP and PLA/PEG/CaP glass turned into promising fully degradable, mechanically stable, bioactive and biocompatible composite scaffolds for TE.

Keywords: Axial view, Biodegradable composites, Composite scaffolds, Glass particles, Mechanically stable, Micro architectures, Micro computed tomography (micro-CT), Poly lactic acid, Scaffold morphology, Tissue engineering applications, Well-defined structures, Bioactive glass, Mechanical properties, Mechanical testing, Polyethylene glycols, Polymer blends, Rapid prototyping, Scaffolds (biology), Scanning electron microscopy, Computerized tomography

Gorostiza, P., Isacoff, E.Y., (2011). Photoswitchable ligand-gated ion channels Photosensitive molecules for controlling biological function (ed. Chambers, J. J. , Kramer, R. H.), Springer (Saskatoon, Canada) 55, 267-285

Ligand-activated proteins can be controlled with light by means of synthetic photoisomerizable tethered ligands (PTLs). The application of PTLs to ligand-gated ion channels, including the nicotinic acetylcholine receptor and ionotropic glutamate receptors, is reviewed with emphasis on rational photoswitch design and the mechanisms of optical switching. Recently reported molecular dynamic methods allow simulation with high reliability of novel PTLs for any ligand-activated protein whose structure is known.

Keywords: Nicotinic acetylcholine receptor, Kainate receptor, Glutamate receptor, Photoisomerizable tether ligand (PTL), Optical switch, Nanotoggle, Azobenzene, Neurobiology,, Nanoengineering, Nanomedicine

Prendergast, P. J., Checa, S., Lacroix, D., (2010). Computational models of tissue differentiation Computational Modeling in Biomechanics (ed. Suvranu De, Farshid Guilak, Mohammad R. K. Mofrad), Springer-Verlag Berlin (Berlin) 3, 353-372

Readers of this chapter will learn about our approach to computer simulation of tissue differentiation in response to mechanical forces. It involves defining algorithms for mechanoregulation of each of following cell activities: proliferation, apoptosis, migration, and differentiation using a stimulus based on a combination of strain and fluid flow (Prendergast et al., J. Biomech., 1997) - algorithms are based on a lattice-modelling which also facilitates building algorithms for complex processes such as angiogenesis. The algorithms are designed to be collaboratable individually. They can be combined to create a computational simulation method for tissue differentiation, using finite element analysis to compute the mechanical stimuli in even quite complex biomechanical environments. Examples are presented of the simulation method in use.

Keywords: Mechanobiology, Lattice modeling, Differentiation, Tissue engineering, Finite element modeling, Scaffolds

Lundin, Daniel, Torrents, Eduard, Poole, Anthony, Sjoberg, Britt-Marie, (2009). RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank BMC Genomics 10, (1), 589

BACKGROUND:Ribonucleotide reductases (RNRs) catalyse the only known de novo pathway for deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. While ribonucleotide reduction has a single evolutionary origin, significant differences between RNRs nevertheless exist, notably in cofactor requirements, subunit composition and allosteric regulation. These differences result in distinct operational constraints (anaerobicity, iron/oxygen dependence and cobalamin dependence), and form the basis for the classification of RNRs into three classes.DESCRIPTION:In RNRdb (Ribonucleotide Reductase database), we have collated and curated all known RNR protein sequences with the aim of providing a resource for exploration of RNR diversity and distribution. By comparing expert manual annotations with annotations stored in Genbank, we find that significant inaccuracies exist in larger databases. To our surprise, only 23% of protein sequences included in RNRdb are correctly annotated across the key attributes of class, role and function, with 17% being incorrectly annotated across all three categories. This illustrates the utility of specialist databases for applications where a high degree of annotation accuracy may be important. The database houses information on annotation, distribution and diversity of RNRs, and links to solved RNR structures, and can be searched through a BLAST interface. RNRdb is accessible through a public web interface at is a specialist database that provides a reliable annotation and classification resource for RNR proteins, as well as a tool to explore distribution patterns of RNR classes. The recent expansion in available genome sequence data have provided us with a picture of RNR distribution that is more complex than believed only a few years ago; our database indicates that RNRs of all three classes are found across all three cellular domains. Moreover, we find a number of organisms that encode all three classes.

Keywords: Enzymology (Biochemistry and Molecular Biophysics), Computer Applications (Computational Biology)

Gutierrez, A., Marco, S., (2009). Biologically inspired signal processing for chemical sensing Studies in Computational Intelligence GOSPEL Workshop on Bio-inspired Signal Processing (ed. Gutierrez, A., Marco, S.), Springer (Barcelona, Spain) -----, (188), -----

This 167-page book is volume 188 in the series 'Studies in computational intelligence.' This volume contain 9 extensive chapters written in English. This volume presents a collection of research advances in biologically inspired signal processing for chemical sensing. The olfactory system, and the gustatory system to a minor extent, has been taken in the last decades as a source of inspiration to develop artificial sensing systems. The recognition of odors by the olfactory system entails a number of signal processing functions such as preprocessing, dimensionality reduction, contrast enhancement, and classification. Using mathematical models to mimic the architecture of the olfactory system, these processing functions can be applied to chemical sensor signals. This book provides background on the olfactory system including a review on information processing in the insect olfactory system along with a proposed signal processing architecture based on the mammalian cortex. It also provides some bio-inspired approaches to process chemical sensor signals such as an olfactory mucosa to improve odor separation and a model of olfactory receptor neuron convergence to correlated sensor responses to an odor and his organoleptic properties. This book will useful to those working or studying in the areas of sensory reception and computational biology.

Keywords: Nervous System (Neural Coordination), Computer Applications (Computational Biology), Sense Organs (Sensory Reception)