Publications

by Keyword: Blood


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Borgheti-Cardoso, L.N., Fernàndez-Busquets, X., (2018). Turning Plasmodium survival strategies against itself Future Medicinal Chemistry 10, (19), 2245-2248

Peyman, Zirak, Clara, Gregori-Pla, Igor, Blanco, Ana, Fortuna, Gianluca, Cotta, Pau, Bramon, Isabel, Serra, Anna, Mola, Jordi, Solà-Soler, Beatriz, F. Giraldo-Giraldo, Turgut, Durduran, Mercedes, Mayos, (2018). Characterization of the microvascular cerebral blood flow response to obstructive apneic events during night sleep Neurophotonics 5, (4), 045003

Obstructive apnea causes periodic changes in cerebral and systemic hemodynamics, which may contribute to the increased risk of cerebrovascular disease of patients with obstructive sleep apnea (OSA) syndrome. The improved understanding of the consequences of an apneic event on the brain perfusion may improve our knowledge of these consequences and then allow for the development of preventive strategies. Our aim was to characterize the typical microvascular, cortical cerebral blood flow (CBF) changes in an OSA population during an apneic event. Sixteen patients (age 58  ±  8  years, 75% male) with a high risk of severe OSA were measured with a polysomnography device and with diffuse correlation spectroscopy (DCS) during one night of sleep with 1365 obstructive apneic events detected. All patients were later confirmed to suffer from severe OSA syndrome with a mean of 83  ±  15 apneas and hypopneas per hour. DCS has been shown to be able to characterize the microvascular CBF response to each event with a sufficient contrast-to-noise ratio to reveal its dynamics. It has also revealed that an apnea causes a peak increase of microvascular CBF (30  ±  17  %  ) at the end of the event followed by a drop (−20  ±  12  %  ) similar to what was observed in macrovascular CBF velocity of the middle cerebral artery. This study paves the way for the utilization of DCS for further studies on these populations.

Keywords: Sleep disorder breathing, Cerebral blood flow, Brain perfusion, Diffuse correlation spectroscopy


Sola-Soler, J., Giraldo, B. F., Fiz, J. A., Jane, R., (2017). Relationship between heart rate excursion and apnea duration in patients with Obstructive Sleep Apnea Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1539-1542

Obstructive Sleep Apnea (OSA) is a sleep disorder with a high prevalence in the general population. It is a risk factor for many cardiovascular diseases, and an independent risk factor for cerebrovascular diseases such as stroke. After an apnea episode, both arterial blood pressure and cerebral blood flow velocity change in function of the apnea duration (AD). We hypothesized that the relative excursion in heart rate (AHR), defined as the percentage difference between the maximum and the minimum heart rate values associated to an obstructive apnea event, is also related to AD. In this work we studied the relationship between apnea-related AHR and AD in a population of eight patients with severe OSA. AHR and AD showed a moderate but statistically significant correlation (p <; 0.0001) in a total of 1454 obstructive apneas analyzed. The average heart rate excursion for apneas with AD ≥ 30s (ΔHR = 31.29 ± 6.64%) was significantly greater (p = 0.0002) than for apneas with AD ∈ [10,20)s (ΔHR = 18.14±3.08%). We also observed that patients with similar Apnea-Hypopnea Index (AHI) may exhibit remarkably different distributions of AHR and AD, and that patients with a high AHI need not have a higher average AHR than others with a lower severity index. We conclude that the overall apnea-induced heart rate excursion is partially explained by the duration of apnoeic episodes, and it may be a simple measure of the cardiovascular stress associated with OSA that is not directly reflected in the AHI.

Keywords: Heart rate, Sleep apnea, Correlation, Indexes, Sociology, Blood vessels


Obregón, R., Ramón-Azcón, J., Ahadian, S., (2017). Nanofiber composites in blood vessel tissue engineering Nanofiber Composites for Biomedical Applications (ed. Ramalingam, M., Ramakrishna, S.), Elsevier (Duxford, UK) Woodhead Publishing Series in Biomaterials, 483-506

Tissue engineering (TE) aims to restore function or replace damaged tissue through biological principles and engineering. Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Composite nanofibers, which are hybrid nanofibers blended from natural and synthetic polymers, represent a major advancement in TE and regenerative medicine, since they take advantage of the physical properties of the synthetic polymer and the bioactivity of the natural polymer while minimizing the disadvantages of both. Although various nanofibrous matrices have been applied to almost all the areas of TE, in this chapter we will focus on nanofiber composites scaffolds for vascular TE.

Keywords: Blood vessels, Nanofiber composite, Tissue engineering, Vascularized tissue


Arcentales, A., Rivera, P., Caminal, P., Voss, A., Bayés-Genís, A., Giraldo, B. F., (2016). Analysis of blood pressure signal in patients with different ventricular ejection fraction using linear and non-linear methods Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 2700-2703

Changes in the left ventricle function produce alternans in the hemodynamic and electric behavior of the cardiovascular system. A total of 49 cardiomyopathy patients have been studied based on the blood pressure signal (BP), and were classified according to the left ventricular ejection fraction (LVEF) in low risk (LR: LVEF>35%, 17 patients) and high risk (HR: LVEF≤35, 32 patients) groups. We propose to characterize these patients using a linear and a nonlinear methods, based on the spectral estimation and the recurrence plot, respectively. From BP signal, we extracted each systolic time interval (STI), upward systolic slope (BPsl), and the difference between systolic and diastolic BP, defined as pulse pressure (PP). After, the best subset of parameters were obtained through the sequential feature selection (SFS) method. According to the results, the best classification was obtained using a combination of linear and nonlinear features from STI and PP parameters. For STI, the best combination was obtained considering the frequency peak and the diagonal structures of RP, with an area under the curve (AUC) of 79%. The same results were obtained when comparing PP values. Consequently, the use of combined linear and nonlinear parameters could improve the risk stratification of cardiomyopathy patients.

Keywords: Feature extraction, Blood pressure, Heart rate, Estimation, Data mining, Covariance matrices, Hospitals


Moles, E., Fernàndez-Busquets, X., (2015). Loading antimalarial drugs into noninfected red blood cells: An undesirable roommate for Plasmodium Future Medicinal Chemistry 7, (7), 837-840

The malaria parasite, Plasmodium spp., is a delicate unicellular organism unable to survive in free form for more than a couple of minutes in the bloodstream. Upon injection in a human by its Anopheles mosquito vector, Plasmodium sporozoites pass through the liver with the aim of invading hepatocytes. Those which succeed spend inside their host cell a recovery time before replicating and entering the blood circulation as fragile merozoites, although their exposure to host defenses is extraordinarily short. Quick invasion of red blood cells (RBCs) in a process lasting just a few minutes allows the parasite to escape immune system surveillance. For most of its erythrocytic cycle the pathogen feeds mainly on hemoglobin as it progresses from the early blood stages, termed rings, to the late forms trophozoites and schizonts. Early stages are ideal targets for antimalarial therapies because drugs delivered to them would have a longer time to kill the parasite before it completes its development. However, only 6 h after invasion does the permeability of the infected erythrocyte to anions and small nonelectrolytes, including some drugs, start to increase as the parasite matures [1]. During this maturation process the parasite hydrolyzes hemoglobin in a digestive vacuole, which is the target of many amphiphilic drugs that freely cross the RBC membrane and accumulate intracellularly. As a result, most antimalarials start affecting the infected cell relatively late in the intraerythrocytic parasite life cycle, when their effect is probably often too short to be lethal to Plasmodium.

Keywords: Malaria, Nanomedicine, Plasmodium, Red blood cell, Targeted drug delivery


Giraldo, B. F., Rodriguez, J., Caminal, P., Bayes-Genis, A., Voss, A., (2015). Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 306-309

Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyophaty patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyophaties were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopaties, obtaining an accuracy of 85.7%.

Keywords: Blood pressure, Electrocardiography, Joints, Kernel, Principal component analysis, Support vector machines, Time series analysis


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials & Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM, ζ-potential, morphology evaluation by FESEM, proliferation and differentiation analysis, as well as in vivo subcutaneous implantations. Material and biological characterization suggested that compositions of organic/inorganic hybrid materials with a Si content equivalent to 40%, which were also those that released more calcium, were osteogenic. They also showed a greater ability to form blood vessels. These results suggest that Si-based ormoglasses can be considered an efficient tool for calcium release modulation, which could play a key role in the angiogenic promoting process.

Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy


Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics , 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)


Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morató, M., Guivernau, B., Eraso-Pichot, A., Salvador, B., Fernàndez-Busquets, X., Roquer, J., Muñoz, F. J., (2014). The blood-brain barrier: Structure, function and therapeutic approaches to cross it Molecular Membrane Biology , 31, (5), 152-167

The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.

Keywords: Blood brain barrier, Drug delivery, Membrane transport


Giraldo, B. F., Calvo, A., Martínez, B., Arcentales, A., Jané, R., Benito, S., (2014). Blood pressure variability analysis in supine and sitting position of healthy subjects IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1021-1024

Blood pressure carries a great deal of information about people’s physical attributes. We analyzed the blood pressure signal in healthy subjects considering two positions, supine and sitting. 44 healthy subjects were studied. Parameters extracted from the blood pressure signal, related to time and frequency domain were used to compare the effect of postural position between supine and sitting. In time domain analysis, the time systolic interval and the time of blood pressure interval were higher in supine than in sitting position (p = 0.001 in both case). Parameters related to frequency peak, interquartile range, in frequency domain presented statistically significant difference (p < 0.0005 in both case). The blood pressure variability parameters presented smaller values in supine than in sitting position (p < 0.0005). In general, the position change of supine to sitting produces an increment in the pressure gradient inside heart, reflected in the blood pressure variability.

Keywords: Blood pressure variability, Systolic time intervals, Diastolic time intervals


Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis


Ivon Rodriguez-Villarreal, Angeles, Tarn, Mark D., Madden, Leigh A., Lutz, Julia B., Greenman, John, Samitier, Josep, Pamme, Nicole, (2011). Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup Lab on a Chip 11, (7), 1240-1248

The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells.

Keywords: Feeble magnetic substances, On-chip, Blood-cells, Microfluidic device, Separation, Field, Levitation, Magnetophoresis, Fractionation, Nanoparticles


Almendros, I., Montserrat, J. M., Torres, M., Gonzalez, C., Navajas, D., Farre, R., (2010). Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea Respiratory Research , 11, (3), 1-6

Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO(2)) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O-2 supply during recurrent swings in arterial SpO(2) in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO(2) was measured by pulse oximetry. The time dependence of arterial SpO(2) and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO(2) showed a stable periodic pattern (no significant changes in maximum [95.5 +/- 0.5%; m +/- SE] and minimum values [83.9 +/- 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO(2). The minimum cerebral cortex PtO2 computed during the first apnea (29.6 +/- 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 +/- 2.9 mmHg; p = 0.011). In contrast to SpO(2), the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 +/- 3.9 mmHg) and minimum (43.7 +/- 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O-2 supply induced by obstructive apneas mimicking OSA.

Keywords: Near-infrared spectroscopy, Sleep-apnea, Iintermittent hypoxia, Cerebral oxygenation, Oxidative stress, Blood-flow, Rat, Apoptosis, Inflammation, Hypercapnia


Carreras, A., Rojas, M., Tsapikouni, T., Montserrat, J. M., Navajas, D., Farre, R., (2010). Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing Respiratory Research , 11, (91), 1-7

Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +/- 0.58 (m +/- SE) and 1.00 +/- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +/- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +/- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.

Keywords: Induced acute lung, Sleep-apnea, Intermitent hypoxia, Cardiovascular-disease, Progenito Cells, Rat model, Inflammation, Mechanisms, Repair, Blood


Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep , 32, (1), 117-119

STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.

Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology