Publications

by Keyword: Bone


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Raymond, Santiago, Maazouz, Yassine, Montufar, Edgar B., Perez, Roman A., González, Borja, Konka, Joanna, Kaiser, Jozef, Ginebra, Maria-Pau, (2018). Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks Acta Biomaterialia 75, 451-462

Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow hardening kinetics hampers the translation to the clinics. Different hydrothermal treatments for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink were explored, comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for bone tissue engineering applications. Statement of Significance: 3D plotting has opened up new perspectives in the bone regeneration field allowing the customisation of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this technique allows the control of the scaffolds’ architecture and porosity. The present work introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole fabrication process from the several days required for the biomimetic processing to a few hours; and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility results support its suitability for cell-based bone regeneration therapies.

Keywords: Calcium phosphate, Hydroxyapatite, Biomimetic, Bone regeneration, 3D plotting, Direct ink writing, Bone graft


Barbeck, Mike, Serra, Tiziano, Booms, Patrick, Stojanovic, Sanja, Najman, Stevo, Engel, Elisabeth, Sader, Robert, Kirkpatrick, Charles James, Navarro, Melba, Ghanaati, Shahram, (2017). Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – Guidance of the inflammatory response as basis for osteochondral regeneration Bioactive Materials , 2, (4), 208-223

Abstract The aim of the present study was the in vitro and in vivo analysis of a bi-layered 3D-printed scaffold combining a PLA layer and a biphasic PLA/bioglass G5 layer for regeneration of osteochondral defects in vivo Focus of the in vitro analysis was on the (molecular) weight loss and the morphological and mechanical variations after immersion in SBF. The in vivo study focused on analysis of the tissue reactions and differences in the implant bed vascularization using an established subcutaneous implantation model in CD-1 mice and established histological and histomorphometrical methods. Both scaffold parts kept their structural integrity, while changes in morphology were observed, especially for the PLA/G5 scaffold. Mechanical properties decreased with progressive degradation, while the PLA/G5 scaffolds presented higher compressive modulus than PLA scaffolds. The tissue reaction to PLA included low numbers of BMGCs and minimal vascularization of its implant beds, while the addition of G5 lead to higher numbers of BMGCs and a higher implant bed vascularization. Analysis revealed that the use of a bi-layered scaffold shows the ability to observe distinct in vivo response despite the physical proximity of PLA and PLA/G5 layers. Altogether, the results showed that the addition of G5 enables to reduce scaffold weight loss and to increase mechanical strength. Furthermore, the addition of G5 lead to a higher vascularization of the implant bed required as basis for bone tissue regeneration mediated by higher numbers of BMGCs, while within the PLA parts a significantly lower vascularization was found optimally for chondral regeneration. Thus, this data show that the analyzed bi-layered scaffold may serve as an ideal basis for the regeneration of osteochondral tissue defects. Additionally, the results show that it might be able to reduce the number of experimental animals required as it may be possible to analyze the tissue response to more than one implant in one experimental animal.

Keywords: Bioactive glass, Polylactic acid (PLA), Bi-layer scaffold, Multinucleated giant cells, Bone substitute, Vascularization, Calcium phosphate glass


O'Neill, R., McCarthy, H. O., Montufar, E. B., Ginebra, M. P., Wilson, D. I., Lennon, A., Dunne, N., (2017). Critical review: Injectability of calcium phosphate pastes and cements Acta Biomaterialia 50, 1-19

Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Statement of Significance Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems.

Keywords: Bone cements, Calcium phosphates, Injectability, Material properties, Phase separation


Ciapetti, G., Di Pompo, G., Avnet, S., Martini, D., Diez-Escudero, A., Montufar, E. B., Ginebra, M. P., Baldini, N., (2017). Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates Acta Biomaterialia 50, 102-113

The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium. Statement of Significance: The novelty of the paper is the differentiation of human blood-derived osteoclast precursors, instead of mouse-derived macrophages as used in most studies, directly on biomimetic micro-nano structured HA-based surfaces, as triggered by osteoblast-produced factors (RANKL/OPG), and influenced by chemistry and topography of the substrate(s). Biomimetic HA-surfaces, like those obtained in calcium phosphate cements, are very different from the conventional calcium phosphate ceramics, both in terms of topography and ion exchange. The role of these factors in modulating precursors’ differentiation and activity is analysed. The system is closely reproducing the physiological process of attachment of host cells and further maturation to osteoclasts toward resorption of the substrate, which occurs in vivo after filling bone defects with the calcium phosphate grafts.

Keywords: Bone resorption, Differentiation, Hydroxyapatite, Ionic exchange, Osteoclasts, Topography


Oliveira, H., Catros, S., Castano, O., Rey, Sylvie, Siadous, R., Clift, D., Marti-Munoz, J., Batista, M., Bareille, R., Planell, J., Engel, E., Amédée, J., (2017). The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation Acta Biomaterialia 54, 377-385

Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3 weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6 weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. Statement of Significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.

Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglasses


Canal, C., Fontelo, R., Hamouda, I., Guillem-Marti, J., Cvelbar, U., Ginebra, M. P., (2017). Plasma-induced selectivity in bone cancer cells death Free Radical Biology and Medicine , 110, 72-80

Background: Current therapies for bone cancers - either primary or metastatic – are difficult to implement and unfortunately not completely effective. An alternative therapy could be found in cold plasmas generated at atmospheric pressure which have already demonstrated selective anti-tumor action in a number of carcinomas and in more relatively rare brain tumors. However, its effects on bone cancer are still unknown. Methods: Herein, we employed an atmospheric pressure plasma jet (APPJ) to validate its selectivity towards osteosarcoma cell line vs. osteoblasts & human mesenchymal stem cells. Results: Cytotoxicity following direct interaction of APPJ with cells is comparable to indirect interaction when only liquid medium is treated and subsequently added to the cells, especially on the long-term (72 h of cell culture). Moreover, following contact of the APPJ treated medium with cells, delayed effects are observed which lead to 100% bone cancer cell death through apoptosis (decreased cell viability with incubation time in contact with APPJ treated medium from 24 h to 72 h), while healthy cells remain fully viable and unaffected by the treatment. Conclusions: The high efficiency of the indirect treatment indicates that an important role is played by the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the gaseous plasma stage and then transmitted to the liquid phase, which overall lead to lethal and selective action towards osteosarcoma cells. These findings open new pathways for treatment of metastatic bone disease with a minimally invasive approach.

Keywords: Atmospheric pressure plasma jet, Bone cancer, hMSC, HOb, Liquids, Osteoblasts, Osteosarcoma, SaOS-2


Diez-Escudero, A., Espanol, M., Montufar, E. B., Di Pompo, G., Ciapetti, G., Baldini, N., Ginebra, M. P., (2017). Focus ion beam/scanning electron microscopy characterization of osteoclastic resorption of calcium phosphate substrates Tissue Engineering Part C: Methods , 23, (2), 118-124

This article presents the application of dual focused ion beam/scanning electron microscopy (FIB-SEM) imaging for preclinical testing of calcium phosphates with osteoclast precursor cells and how this high-resolution imaging technique is able to reveal microstructural changes at a level of detail previously not possible. Calcium phosphate substrates, having similar compositions but different microstructures, were produced using low-and high-Temperature processes (biomimetic calcium-deficient hydroxyapatite [CDHA] and stoichiometric sintered hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days before evaluating their resorptive potential on varying microstructural features. Alternative to classical morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent microstructure by transversally sectioning cells and observing both the cells and the substrates. Resorption pits, indicating OC activity, were visible on the smoother surface of high-Temperature sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain surface under the cells, as well as intergranular dissolution. No resorption pits were evident on the surface of the rough CDHA substrates. However, whereas no degradation was detected by FIB sections in the material underlying some of the cells, early stages of OC-mediated acidic degradation were observed under cells with more spread morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise difficult to visualize.

Keywords: Bone Regeneration, Calcium Phosphate, Focus Ion Beam, Osteoclast, Resorption, Scanning Electron Microscopy


Vila, M., García, A., Girotti, A., Alonso, M., Rodríguez-Cabello, J. C., González-Vázquez, A., Planell, J. A., Engel, E., Buján, J., Garcíaa-Honduvilla, N., Vallet-Regí, M., (2016). 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine Acta Biomaterialia 45, 349-356

The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Statement of Significance Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage.

Keywords: Bone marrow Mesenchymal Stromal Cells (BMSCs), Bone repair, Elastin-like Recombinamers (ELRs), Rapid prototyped 3D scaffolds, Silicon doped hydroxyapatite (Si-HA), Tissue engineering


Oliveira, Hugo, Catros, Sylvain, Boiziau, Claudine, Siadous, Robin, Marti-Munoz, Joan, Bareille, Reine, Rey, Sylvie, Castano, Oscar, Planell, Josep, Amédée, Joëlle, Engel, Elisabeth, (2016). The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment Acta Biomaterialia 29, 435-445

Abstract In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost. As such, more cost effective alternatives are awaited. Here, we demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate ormoglass (CaP) particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. We show that the current approach elicited the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial. As both PLA and CaP are currently accepted for clinical application these off-the-shelf novel membranes have great potential for guided bone regeneration applications. Statement of significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, our group has found that calcium ions released by the degradation of calcium phosphate ormoglasses (CaP) are effective angiogenic promoters. Based on this, in this work we successfully produced hybrid fibrous mats with different contents of CaP nanoparticles and thus with different calcium ion release rates, using an ormoglass – poly(lactic acid) blend approach. We show that these matrices, upon implantation in a subcutaneous site, could elicit the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial, in a CaP dose dependent manner. This off-the-shelf cost effective approach presents great potential to translate to the clinics.

Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglass


Carrera, I., Gelber, P. E., Chary, G., González-Ballester, M. A., Monllau, J. C., Noailly, J., (2016). Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration International Orthopaedics , 40, (10), 2163-2169

Purpose: To assess, with finite element (FE) calculations, whether immediate weight bearing would be possible after surgical stabilization either with cannulated screws or with a locking plate in a split fracture of the lateral tibial plateau (LTP). Methods: A split fracture of the LTP was recreated in a FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. A split fracture of the lateral tibial plateau was reproduced by using geometrical data from patient radiographs. A locking screw plate (LP) and a cannulated screw (CS) systems were modelled to virtually reduce the fracture and 80 kg static body-weight was simulated. Results: While the simulated body-weight led to clinically acceptable interfragmentary motion, possible traumatic bone shear stresses were predicted nearby the cannulated screws. With a maximum estimation of about 1.7 MPa maximum bone shear stresses, the Polyax system might ensure more reasonable safety margins. Conclusions: Split fractures of the LTP fixed either with locking screw plate or cannulated screws showed no clinically relevant IFM in a FE model. The locking screw plate showed higher mechanical stability than cannulated screw fixation. The locking screw plate might also allow full or at least partial weight bearing under static posture at time zero.

Keywords: Bone fixation, Finite element, Fracture fixation, Interfragmentary motion, Tibial plateau fractures, Weight bearing


Blanchard, R., Morin, C., Malandrino, A., Vella, A., Sant, Z., Hellmich, C., (2016). Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics International Journal for Numerical Methods in Biomedical Engineering , 32, (9), e02760

Summary: While in clinical settings, bone mineral density measured by computed tomography (CT) remains the key indicator for bone fracture risk, there is an ongoing quest for more engineering mechanics-based approaches for safety analyses of the skeleton. This calls for determination of suitable material properties from respective CT data, where the traditional approach consists of regression analyses between attenuation-related grey values and mechanical properties. We here present a physics-oriented approach, considering that elasticity and strength of bone tissue originate from the material microstructure and the mechanical properties of its elementary components. Firstly, we reconstruct the linear relation between the clinically accessible grey values making up a CT, and the X-ray attenuation coefficients quantifying the intensity losses from which the image is actually reconstructed. Therefore, we combine X-ray attenuation averaging at different length scales and over different tissues, with recently identified 'universal' composition characteristics of the latter. This gives access to both the normally non-disclosed X-ray energy employed in the CT-device and to in vivo patient-specific and location-specific bone composition variables, such as voxel-specific mass density, as well as collagen and mineral contents. The latter feed an experimentally validated multiscale elastoplastic model based on the hierarchical organization of bone. Corresponding elasticity maps across the organ enter a finite element simulation of a typical load case, and the resulting stress states are increased in a proportional fashion, so as to check the safety against ultimate material failure. In the young patient investigated, even normal physiological loading is probable to already imply plastic events associated with the hydrated mineral crystals in the bone ultrastructure, while the safety factor against failure is still as high as five.

Keywords: Bone, Bone mass density, Continuum micromechanics, Elastoplasticity, Spine, Strength, X-ray physics


Sánchez-Ferrero, Aitor, Mata, Álvaro, Mateos-Timoneda, Miguel A., Rodríguez-Cabello, José C., Alonso, Matilde, Planell, Josep, Engel, Elisabeth, (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration Biomaterials , 68, 42-53

Bone tissue engineering demands alternatives overcoming the limitations of traditional approaches in the context of a constantly aging global population. In the present study, elastin-like recombinamers hydrogels were produced by means of carbodiimide-catalyzed crosslinking with citric acid, a molecule suggested to be essential for bone nanostructure. By systematically studying the effect of the relative abundance of reactive species on gelation and hydrogel properties such as functional groups content, degradation and structure, we were able to understand and to control the crosslinking reaction to achieve hydrogels mimicking the fibrillary nature of the extracellular matrix. By studying the effect of polymer concentration on scaffold mechanical properties, we were able to produce hydrogels with a stiffness value of 36.13 ± 10.72 kPa, previously suggested to be osteoinductive. Microstructured and mechanically-tailored hydrogels supported the growth of human mesenchymal stem cells and led to higher osteopontin expression in comparison to their non-tailored counterparts. Additionally, tailored hydrogels were able to rapidly self-mineralize in biomimetic conditions, evidencing that citric acid was successfully used both as a crosslinker and a bioactive molecule providing polymers with calcium phosphate nucleation capacity.

Keywords: Biomimetic material, Biomineralisation, Bone tissue engineering, Cross-linking, Hydrogel, Mesenchymal stem cell


Kovtun, A., Goeckelmann, M. J., Niclas, A. A., Montufar, E. B., Ginebra, M. P., Planell, J. A., Santin, M., Ignatius, A., (2015). In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams Acta Biomaterialia Elsevier Ltd 12, (1), 242-249

Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects.

Keywords: Bone regeneration, Calcium phosphate cement, Gelatine, Rabbit model, Soybean


Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)


Navarro, S., Moleiro, V., Molina-Estevez, F. J., Lozano, M. L., Chinchon, R., Almarza, E., Quintana-Bustamante, O., Mostoslavsky, G., Maetzig, T., Galla, M., Heinz, N., Schiedlmeier, B., Torres, Y., Modlich, U., Samper, E., Río, P., Segovia, J. C., Raya, A., Güenechea, G., Izpisua-Belmonte, J. C., Bueren, J. A., (2014). Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: Implications in cell reprogramming and stem cell therapy Stem Cells , 32, (2), 436-446

Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2Δ27/Δ27), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2Δ27/Δ27 induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2Δ27/Δ27 iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2 Δ27/Δ27 mouse embryonic fibroblasts. Gene-corrected Brca2Δ27/Δ27 iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2Δ27/Δ27 recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2Δ27/Δ27 iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.

Keywords: Bone marrow aplasia, Cellular therapy, Fanconi anemia, Gene therapy, Hematopoietic stem cells, Induced pluripotent stem cells


Vila, O. F., Martino, M. M., Nebuloni, L., Kuhn, G., Pérez-Amodio, S., Müller, R., Hubbell, J. A., Rubio, N., Blanco, J., (2014). Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors Acta Biomaterialia 10, (10), 4377-4389

In this work we have evaluated the capacity of bone morphogenetic protein-2 (BMP-2) and fibrin-binding platelet-derived growth factor-BB (PDGF-BB) to support cell growth and induce bone regeneration using two different imaging technologies to improve the understanding of structural and organizational processes participating in tissue repair. Human mesenchymal stem cells from adipose tissue (hAMSCs) expressing two luciferase genes, one under the control of the cytomegalovirus (CMV) promoter and the other under the control of a tissue-specific promoter (osteocalcin or platelet endothelial cell adhesion molecule), were seeded in fibrin matrices containing BMP-2 and fibrin-binding PDGF-BB, and further implanted intramuscularly or in a mouse calvarial defect. Then, cell growth and bone regeneration were monitored by bioluminescence imaging (BLI) to analyze the evolution of target gene expression, indicative of cell differentiation towards the osteoblastic and endothelial lineages. Non-invasive imaging was supplemented with micro-computed tomography (μCT) to evaluate bone regeneration and high-resolution μCT of vascular casts. Results from BLI showed hAMSC growth during the first week in all cases, followed by a rapid decrease in cell number; as well as an increment of osteocalcin but not PECAM-1 expression 3 weeks after implantation. Results from μCT show that the delivery of BMP-2 and PDGF-BB by fibrin induced the formation of more bone and improves vascularization, resulting in more abundant and thicker vessels, in comparison with controls. Although the inclusion of hAMSCs in the fibrin matrices made no significant difference in any of these parameters, there was a significant increment in the connectivity of the vascular network in defects treated with hAMSCs.

Keywords: Angiogenesis, Bioluminescence imaging, Bone regeneration, Fibrin, Mesenchymal stem cell


Arcos, D., Boccaccini, A. R., Bohner, M., Díez-Pérez, A., Epple, M., Gómez-Barrena, E., Herrera, A., Planell, J. A., Rodríguez-Mañas, L., Vallet-Regí, M., (2014). The relevance of biomaterials to the prevention and treatment of osteoporosis Acta Biomaterialia 10, (5), 1793-1805

Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. In order to analyze this scenario and propose alternatives to overcome it, the Spanish and European Network of Excellence for the Prevention and Treatment of Osteoporotic Fractures, "Ageing", was created. This network integrates three communities, e.g. clinicians, materials scientists and industrial advisors, tackling the same problem from three different points of view. Keeping in mind the premise "living longer, living better", this commentary is the result of the thoughts, proposals and conclusions obtained after one year working in the framework of this network.

Keywords: Ageing, Biomaterials, Bone, Osteoporosis


Malandrino, Andrea, Lacroix, Damien, Hellmich, Christian, Ito, Keita, Ferguson, Stephen J., Noailly, J., (2014). The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc Osteoarthritis and Cartilage , 22, (7), 1053-1060

Objective To investigate the relevance of the human vertebral endplate poromechanics on the fluid and metabolic transport from and to the intervertebral disc (IVD) based on educated estimations of the poromechanical parameter values of the bony endplate (BEP). Methods 50 micro-models of different BEP samples were generated from μCTs of lumbar vertebrae and allowed direct determination of porosity values. Permeability values were calculated by using the micro-models, through the simulation of permeation via computational fluid dynamics. These educated ranges of porosity and permeability values were used as inputs for mechano-transport simulations to assess their effect on both the distributions of metabolites within an IVD model and the poromechanical calculations within the cartilaginous part of the endplate i.e., the cartilage endplate (CEP). Results BEP effective permeability was highly correlated to local variations of porosity (R2 ≈ 0.88). Universal patterns between bone volume fraction and permeability arose from these results and from other experimental data in the literature. These variations in BEP permeability and porosity had negligible effects on the distributions of metabolites within the disc. In the CEP, the variability of the poromechanical properties of the BEP did not affect the predicted consolidation but induced higher fluid velocities. Conclusions The present paper provides the first sets of thoroughly identified BEP parameter values that can be further used in patient-specific poromechanical studies. Representing BEP structural changes through variations in poromechanical properties did not affect the diffusion of metabolites. However, attention might be paid to alterations in fluid velocities and cell mechano-sensing within the CEP.

Keywords: Bony endplate, Spine mechanobiology, Intervertebral disc metabolites, Hydraulic Permeability, Bone Porosity, Poromechanics


Oberhansl, S., Garcia, A., Lagunas, A., Prats-Alfonso, E., Hirtz, M., Albericio, F., Fuchs, H., Samitier, J., Martinez, Elena, (2014). Mesopattern of immobilised bone morphogenetic protein-2 created by microcontact printing and dip-pen nanolithography influence C2C12 cell fate RSC Advances , 4, (100), 56809-56815

Dip-pen nanolithography and microcontact printing were used to fabricate mesopatterned substrates for cell differentiation experiments. A biotin-thiol was patterned on gold substrates and subsequently functionalised with streptavidin and biotinylated bone morphogenetic protein-2 (BMP-2). The feasibility of mesopatterned substrates containing immobilised BMP-2 was proven by obtaining similar differentiation outcomes compared to the growth factor in solution. Therefore, these substrates might be suitable for replacing conventional experiments with BMP-2 in solution.

Keywords: Bone morphogenetic protein-2, C2C12 cells, Dip-pen nanolithography, Micro contact printing


Sanzana, E. S., Navarro, M., Ginebra, M. P., Planell, J. A., Ojeda, A. C., Montecinos, H. A., (2014). Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds Journal of Biomedical Materials Research - Part A , 102, (6), 1767-1773

The aim of this work is to shed light on the role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. A calcium phosphate glass in the system P2O5-CaO-Na2O-TiO2 was foamed using two different porogens, namely albumen and hydrogen peroxide (H2O2); the resulting three-dimensional porous structures were characterized and implanted in New Zealand rabbits to study their in vivo behavior. Scaffolds foamed with albumen displayed a monomodal pore size distribution centered around 150 μm and a porosity of 82%, whereas scaffolds foamed with H2O2 showed lower porosity (37%), with larger elongated pores, and multimodal size distribution. After 12 weeks of implantation, histology results revealed a good osteointegration for both types of scaffolds. The quantitative morphometric analysis showed the substitution of the biomaterial by new bone in the case of glasses foamed with albumen. In contrast, bone neoformation and material resorption were significantly lower in the defects filled with the scaffolds foamed with H2O2. The results obtained in this study showed that both calcium phosphate glass scaffolds were osteoconductive, biocompatible, and biodegradable materials. However, differences in porosity, pore architecture, and microstructure led to substantially different in vivo response.

Keywords: Bone substitutes, Calcium phosphate glasses, in vivo, Scaffolds, Tissue engineering


Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning


Pérez-Amodio, Soledad, Engel, Elisabeth, (2014). Bone biology and Regeneration Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 315-342

Each bone of the skeleton constantly undergoes modeling during life to help it to adapt to changing biomechanical forces as well as remodeling to remove old bone and replace it with new, mechanically stronger bone to help preserve bone strength. Bone remodeling involves the removal of mineralized bone by osteoclasts, followed by the formation of bone matrix through the osteoblasts that subsequently become mineralized. All these assets make bone a suitable model for regeneration. Bone tissue can be grossly divided into inorganic mineral material (mostly HA), and organic material from cells and the extracellular matrix. This chapter outlines some of the bone diseases such as osteoporosis and Paget's disease. Bone can be considered as a biphasic composite material, with two phases: one the mineral and the other collagen. This combination confers better mechanical properties on the tissue than each component itself.

Keywords: Bone biology, Bone cells, Bone diseases, Bone extracellular matrix, Bone mechanics, Bone remodeling, Bone tissue regeneration, Skeleton


Perez, R. A., Altankov, G., Jorge-Herrero, E., Ginebra, M. P., (2013). Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications Journal of Tissue Engineering and Regenerative Medicine , 7, (5), 353-361

Novel hydroxyapatite (HA)-collagen microcarriers (MCs) with different micro/nanostructures were developed for bone tissue-engineering applications. The MCs were fabricated via calcium phosphate cement (CPC) emulsion in oil. Collagen incorporation in the liquid phase of the CPC resulted in higher MC sphericity. The MCs consisted of a porous network of entangled hydroxyapatite crystals, formed as a result of the CPC setting reaction. The addition of collagen to the MCs, even in an amount as small as 0.8wt%, resulted in an improved interaction with osteoblast-like Saos-2 cells. The micro/nanostructure and the surface texture of the MCs were further tailored by modifying the initial particle size of the CPC. A synergistic effect between the presence of collagen and the nanosized HA crystals was found, resulting in significantly enhanced alkaline phosphatase activity on the collagen-containing nanosized HA MCs.

Keywords: Bone regeneration, Calcium phosphate cement, Cell response, Collagen, Hydroxyapatite, Microcarrier


Almendros, Isaac, Carreras, Alba, Montserrat, Josep M., Gozal, David, Navajas, Daniel, Farre, Ramon, (2012). Potential role of adult stem cells in obstructive sleep apnea Frontiers in Neurology , 3, 1-6

Adult stem cells are undifferentiated cells that can be mobilized from the bone marrow or other organs, home into injured tissues and differentiate into different cell phenotypes to serve in a repairing capacity. Furthermore, these cells can respond to inflammation and oxidative stress by exhibiting immunomodulatory properties. The protective and reparative roles of mesenchymal stem cells (MSCs), very small embryonic-like stem cells (VSELs) and endothelial progenitor cells (EPCs) have primarily been examined and characterized in auto-immune and cardiovascular diseases. Obstructive sleep apnea (OSA) is a very prevalent disease (4-5% of adult population and 2-3% of children) characterized by an abnormal increase in upper airway collapsibility. Recurrent airway obstructions elicit arterial oxygen desaturations, increased inspiratory efforts and sleep fragmentation, which have been associated with important long-term neurocognitive, metabolic, and cardiovascular consequences. Since inflammation, oxidative stress and endothelial dysfunction are key factors in the development of the morbid consequences of OSA, bone marrow-derived stem cells could be important modulators of the morbid phenotype by affording a protective role. This mini-review is focused on the recent data available on EPCs, VSELs and MSCs in both animal models and patients with OSA.

Keywords: Mesenchymal Stem Cells, Sleep Apnea, Endothelial progenitor cells, Very Small-like Embryonic Stem Cells, Adult bone-marrow derived stem cells


Ginebra, M. P., Canal, C., Espanol, M., Pastorino, D., Montufar, E. B., (2012). Calcium phosphate cements as drug delivery materials Advanced Drug Delivery Reviews , 64, (12), 1090-1110

Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions.

Keywords: Antibiotic, Bioceramic, Biomaterial, Bone regeneration, Calcium phosphate cement, Ceramic matrix, Growth factor, Hydroxyapatite, Ions, Protein


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements Acta Biomaterialia 8, (1), 386-393

Calcium phosphate compounds can potentially influence cellular fate through ionic substitutions. However, to be able to turn such solution-mediated processes into successful directors of cellular response, a perfect understanding of the material-induced chemical reactions in situ is required. We therefore report on the application of home-made electrochemical microelectrodes, tested as pH and chloride sensors, for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials prepared from α-tricalcium phosphate using clinically relevant liquid to powder ratios. The small size of the electrodes allowed for online measurements in traditionally inaccessible in vitro environments, such as the immediate material-liquid interface and the interior of curing bone cement. The kinetic data obtained has been compared to theoretical sorption models, confirming that the proposed setup can provide key information for improved understanding of the biochemical environment imposed by chemically reactive biomaterials.

Keywords: Calcium phosphate, Hydroxyapatite, Ion sorption, Iridium oxide, Sensors, Animals, Biocompatible Materials, Bone Cements, Calcium Phosphates, Cells, Cultured, Chlorides, Electrochemical Techniques, Gold, Hydrogen-Ion Concentration, Hydroxyapatites, Iridium, Materials Testing, Microelectrodes, Powders, Silver, Silver Compounds, Water


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite Journal of Materials Science-Materials in Medicine , 23, (10), 2509-2520

Solution-mediated reactions due to ionic substitutions are increasingly explored as a strategy to improve the biological performance of calcium phosphate-based materials. Yet, cellular response to well-defined dynamic changes of the ionic extracellular environment has so far not been carefully studied in a biomaterials context. In this work, we present kinetic data on how osteoblast-like SAOS-2 cellular activity and calcium-deficient hydroxyapatite (CDHA) influenced extracellular pH as well as extracellular concentrations of calcium and phosphate in standard in vitro conditions. Since cells were grown on membranes permeable to ions and proteins, they could share the same aqueous environment with CDHA, but still be physically separated from the material. In such culture conditions, it was observed that gradual material-induced adsorption of calcium and phosphate from the medium had only minor influence on cellular proliferation and alkaline phosphatase activity, but that competition for calcium and phosphate between cells and the biomaterial delayed and reduced significantly the cellular capacity to deposit calcium in the extracellular matrix. The presented work thus gives insights into how and to what extent solution-mediated reactions can influence cellular response, and this will be necessary to take into account when interpreting CDHA performance both in vitro and in vivo.

Keywords: Alkaline-phosphatase activity, Saos-2 cells, In-vitro, bone mineralization, Biological basis, Differentiation, Culture, Matrix, Proliferation, Topography


Montufar, Edgar B., Traykova, Tania, Planell, Josep A., Ginebra, Maria-Pau, (2011). Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatine Materials Science and Engineering: C 31, (7), 1498-1504

Hydroxyapatite foams are potential synthetic bone grafting materials or scaffolds for bone tissue engineering. A novel method to obtain injectable hydroxyapatite foams consists in foaming the liquid phase of a calcium phosphate cement. In this process, the cement powder is incorporated into a liquid foam, which acts as a template for macroporosity. After setting, the cement hardens maintaining the macroporous structure of the foam. In this study a low molecular weight surfactant, Polysorbate 80, and a protein, gelatine, were compared as foaming agents of a calcium phosphate cement. The foamability of Polysorbate 80 was greater than that of gelatine, resulting in higher macroporosity in the set hydroxyapatite foam and higher macropore interconnectivity. Gelatine produced less interconnected foams, especially at high concentrations, due to a higher liquid foam stability. However it increased the injectability and cohesion of the foamed paste, and enhanced osteoblastic-like cell adhesion, all of them important properties for bone grafting materials.

Keywords: Hydroxyapatite, Porosity, Calcium phosphate cement, Scaffolds, Foaming, Bone regeneration


Bohner, M., Loosli, Y., Baroud, G., Lacroix, D., (2011). Commentary: Deciphering the link between architecture and biological response of a bone graft substitute Acta Biomaterialia 7, (2), 478-484

Hundreds of studies have been devoted to the search for the ideal architecture for bone scaffold. Despite these efforts, results are often contradictory, and rules derived from these studies are accordingly vague. In fact, there is enough evidence to postulate that ideal scaffold architecture does not exist. The aim of this document is to explain this statement and review new approaches to decipher the existing but complex link between scaffold architecture and in vivo response.

Keywords: Biomaterial, Bone, Tissue engineering, Resorbable, Graft


Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A., Ginebra, M. P., Baldini, N., (2011). Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response Acta Biomaterialia 7, (4), 1780-1787

Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so far only been obtained through the addition of relatively toxic surfactants. The present work describes the response of osteoblasts to a novel injectable foamed bone cement based on a composite formulation including the bioactive foaming agents soybean and gelatine. The foaming properties of both defatted soybean and gelatine gels were exploited to develop a self-hardening soy/gelatine/hydroxyapatite composite foam able to retain porosity upon injection. After setting, the foamed paste produced a calcium-deficient hydroxyapatite scaffold, showing good injectability and cohesion as well as interconnected porosity after injection. The intrinsic bioactivity of soybean and gelatine was shown to favour osteoblast adhesion and growth. These findings suggest that injectable, porous and bioactive calcium phosphate cements can be produced for bone regeneration through minimally invasive surgery.

Keywords: Calcium phosphate cement, Composite, Bone tissue engineering, Cell viability, Bioactivity


Byrne, Damien P., Lacroix, Damien, Prendergast, Patrick J., (2011). Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach Journal of Orthopaedic Research , 29, (10), 1496-1503

In this study, a three-dimensional (3D) computational simulation of bone regeneration was performed in a human tibia under realistic muscle loading. The simulation was achieved using a discrete lattice modeling approach combined with a mechanoregulation algorithm to describe the cellular processes involved in the healing process namely proliferation, migration, apoptosis, and differentiation of cells. The main phases of fracture healing were predicted by the simulation, including the bone resorption phase, and there was a qualitative agreement between the temporal changes in interfragmentary strain and bending stiffness by comparison to experimental data and clinical results. Bone healing was simulated beyond the reparative phase by modeling the transition of woven bone into lamellar bone. Because the simulation has been shown to work with realistic anatomical 3D geometry and muscle loading, it demonstrates the potential of simulation tools for patient-specific pre-operative treatment planning.

Keywords: Tissue differentiation, Computational analysis, Mechanical conditions, Bone regeneration, Weight-bearing, Proliferation, Osteoblast, Stiffness, Ingrowth, Scaffold


Perez, R. A., Del Valle, S., Altankov, G., Ginebra, M. P., (2011). Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 97B, (1), 156-166

Hydroxyapatite and hybrid gelatine/hydroxyapatite microspheres were obtained through a water in oil emulsion of a calcium phosphate cement (CPC). The setting reaction of the CPC, in this case the hydrolysis of alpha-tricalcium phosphate, was responsible for the consolidation of the microspheres. After the setting reaction, the microspheres consisted of an entangled network of hydroxyapatite crystals, with a high porosity and pore sizes ranging between 0.5 and 5 mu m. The size of the microspheres was tailored by controlling the viscosity of the hydrophobic phase, the rotation speed, and the initial powder size of the CPC. The incorporation of gelatin increased the sphericity of the microspheres, as well as their size and size dispersion. To assess the feasibility of using the microspheres as cell microcarriers, Saos-2 cells were cultured on the microspheres. Fluorescent staining, SEM studies, and LDH quantification showed that the microspheres were able to sustain cell growth. Cell adhesion and proliferation was significantly improved in the hybrid gelatin/hydroxyapatite microspheres as compared to the hydroxyapatite ones.

Keywords: Calcium phosphate(s), Bone graft, Microspheres, Composite/hard tissue, Hydroxy(1)lapatite


Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., Mestres, G., (2010). New processing approaches in calcium phosphate cements and their applications in regenerative medicine Acta Biomaterialia 6, (8), 2863-2873

The key feature of calcium phosphate cements (CPCs) lies in the setting reaction triggered by mixing one or more solid calcium phosphate salts with an aqueous solution. Upon mixture, the reaction takes place through a dissolution-precipitation process which is macroscopically observed by a gradual hardening of the cement paste. The precipitation of hydroxyapatite nanocrystals at body or room temperature, and the fact that those materials can be used as self-setting pastes, have for many years been the most attractive features of CPCs. However, the need to develop materials able to sustain bone tissue ingrowth and be capable of delivering drugs and bioactive molecules, together with the continuous requirement from surgeons to develop more easily handling cements, has pushed the development of new processing routes that can accommodate all these requirements, taking advantage of the possibility of manipulating the self-setting CPC paste. It is the goal of this paper to provide a brief overview of the new processing developments in the area of CPCs and to identify the most significant achievements.

Keywords: Bone regeneration, Calcium phosphate cements, Granules, Microcarriers, Scaffolds


Milan, J. L., Planell, J. A., Lacroix, D., (2010). Simulation of bone tissue formation within a porous scaffold under dynamic compression Biomechanics and Modeling in Mechanobiology , 9, (5), 583-596

A computational model of mechanoregulation is proposed to predict bone tissue formation stimulated mechanically by overall dynamical compression within a porous polymeric scaffold rendered by micro-CT. Dynamic compressions of 0.5-5% at 0.0025-0.025 s(-1) were simulated. A force-controlled dynamic compression was also performed by imposing a ramp of force from 1 to 70 N. The model predicts homogeneous mature bone tissue formation under strain levels of 0.5-1% at strain rates of 0.0025-0.005 s(-1). Under higher levels of strain and strain rates, the scaffold shows heterogeneous mechanical behaviour which leads to the formation of a heterogeneous tissue with a mixture of mature bone and fibrous tissue. A fibrous tissue layer was also predicted under the force-controlled dynamic compression, although the same force magnitude was found promoting only mature bone during a strain-controlled compression. The model shows that the mechanical stimulation of bone tissue formation within a porous scaffold closely depends on the loading history and on the mechanical behaviour of the scaffold at local and global scales.

Keywords: Bone tissue engineering, Scaffold, Tissue differentiation, Mechanoregulation, Finite element analysis


Koch, M. A., Vrij, E. J., Engel, E., Planell, J. A., Lacroix, D., (2010). Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters Journal of Biomedical Materials Research - Part A , 95A, (4), 1011-1018

A promising approach to bone tissue engineering lies in the use of perfusion bioreactors where cells are seeded and cultured on scaffolds under conditions of enhanced nutrient supply and removal of metabolic products. Fluid flow alterations can stimulate cell activity, making the engineering of tissue more efficient. Most bioreactor systems are used to culture cells on thin scaffold discs. In clinical use, however, bone substitutes of large dimensions are needed. In this study, MG63 osteoblast-like cells were seeded on large porous PLA/glass scaffolds with a custom developed perfusion bioreactor system. Cells were seeded by oscillating perfusion of cell suspension through the scaffolds. Applicable perfusion parameters for successful cell seeding were determined by varying fluid flow velocity and perfusion cycle number. After perfusion, cell seeding, the cell distribution, and cell seeding efficiency were determined. A fluid flow velocity of 5 mm/s had to be exceeded to achieve a uniform cell distribution throughout the scaffold interior. Cell seeding efficiencies of up to 50% were achieved. Results suggested that perfusion cycle number influenced cell seeding efficiency rather than fluid flow velocities. The cell seeding conducted is a promising basis for further long term cell culture studies in large porous scaffolds.

Keywords: Bioreactor, Bone tissue engineering, Scaffolds, In vitro


Aguirre, A., Planell, J. A., Engel, E., (2010). Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis Biochemical and Biophysical Research Communications , 400, (2), 284-291

Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

Keywords: Bone marrow, Endothelial progenitor cell, Co-culture, Mesenchymal stem cell, Angiogenesis


Aguirre, A., Gonzalez, A., Planell, J. A., Engel, E., (2010). Extracellular calcium modulates in vitro bone marrow-derived Flk-1(+) CD34(+) progenitor cell chemotaxis and differentiation through a calcium-sensing receptor Biochemical and Biophysical Research Communications , 393, (1), 156-161

Angiogenesis is a complex process regulated by many cell types and a large variety of biochemical signals such as growth factors, transcription factors, oxygen and nutrient diffusion among others. In the present study, we found out that Flk-1(+) CD34(+) progenitor cells (bone marrow resident cells with an important role in angiogenesis) were responsive to changes in extracellular calcium concentration through a membrane bound, G-protein-coupled receptor sensitive to calcium ions related to the calcium-sensing receptor (CaSR). Calcium was able to induce progenitor cell migration in Boyden chamber experiments and tubulogenesis in Matrigel assays. Addition of anti-CaSR antibodies completely blocked the effect, while CaSR agonist Mg2+ produced a similar response to that of calcium. Real time RT-PCR for a wide array of angiogenesis-related genes showed increased expression of endothelial markers and signaling pathways involved in angiogenesis. These results suggest calcium could be a physiological modulator of the bone marrow progenitor cell-mediated angiogenic response.

Keywords: Endothelial progenitor cell, Calcium-sensing receptor, Angiogenesis, Chemotaxis, Calcium, Bone marrow


Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium


Jang, J. H., Castano, O., Kim, H. W., (2009). Electrospun materials as potential platforms for bone tissue engineering Advanced Drug Delivery Reviews , 61, (12), 1065-1083

Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.

Keywords: Electrospun nanofiber, Bone tissue engineering, Biomimetic matrix, Bone bioactivity, 3D scaffolding


Milan, J. L., Planell, J. A., Lacroix, D., (2009). Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold Biomaterials , 30, (25), 4219-4226

A computational model based on finite element method (FEM) and computational fluid dynamics (CFD) is developed to analyse the mechanical stimuli in a composite scaffold made of polylactic acid (PLA) matrix with calcium phosphate glass (Glass) particles. Different bioreactor loading conditions were simulated within the scaffold. In vitro perfusion conditions were reproduced in the model. Dynamic compression was also reproduced in an uncoupled fluid-structure scheme: deformation level was studied analyzing the mechanical response of scaffold alone under static compression while strain rate was studied considering the fluid flow induced by compression through fixed scaffold. Results of the model show that during perfusion test an inlet velocity of 25mum/s generates on scaffold surface a fluid flow shear stress which may stimulate osteogenesis. Dynamic compression of 5% applied on the PLA-Glass scaffold with a strain rate of 0.005s(-1) has the benefit to generate mechanical stimuli based on both solid shear strain and fluid flow shear stress on large scaffold surface area. Values of perfusion inlet velocity or compression strain rate one order of magnitude lower may promote cell proliferation while values one order of magnitude higher may be detrimental for cells. FEM-CFD scaffold models may help to determine loading conditions promoting bone formation and to interpret experimental results from a mechanical point of view.

Keywords: Bone tissue engineering, Scaffold, Finite element analysis, Computational fluid dynamics, Mechanical stimuli


Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep , 32, (1), 117-119

STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.

Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology


Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies Journal of Materials Science: Materials in Medicine , 20, (7), 1525-1533

Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.

Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media


Lacroix, D., (2009). Biomechanical aspects of bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK)

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Bone composition and structure, Biomechanical properties of bone, Bone damage and repair


Planell, J. A., Navarro, M., (2009). Challenges in bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Social impact of musculoskeletal disease, Economic burden of musculoskeletal disease, Social aspects of dental and maxillofacial conditions, Some clinical challenges of bone repair, Conclusions and future trends, Sources of further information and advice


Mateos-Timoneda, M. A., (2009). Polymers for bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Ultra high molecular weight polyethylene (UHMWPE), Acrylic polymers as bone cement, Biodegradable polymers


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds


Sanzana, E. S., Navarro, M., Macule, F., Suso, S., Planell, J. A., Ginebra, M. P., (2008). Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes Acta Biomaterialia 4, (6), 1924-1933

The use of injectable self-setting calcium phosphate cements or soluble glass granules represent two different strategies for bone regeneration, each with distinct advantages and potential applications. This study compares the in vivo behavior of two calcium phosphate cements and two phosphate glasses with different composition, microstructure and solubility, using autologous bone as a control, in a rabbit model. The implanted materials were alpha-tricalcium phosphate cement (cement H), calcium sodium potassium phosphate cement (cement R), and two phosphate glasses in the P2O5-CaO-Na2O and P2O5-CaO-Na2O-TiO2 systems. The four materials were osteoconductive, biocompatible and biodegradable. Radiological and histological studies demonstrated correct osteointegration and substitution of the implants by new bone. The reactivity of the different materials, which depends on their solubility, porosity and specific surface area, affected the resorption rate and bone formation mainly during the early stages of implantation, although this effect was weak. Thus, at 4 weeks the degradation was slightly higher in cements than in glasses, especially for cement R. However, after 12 weeks of implantation all materials showed a similar degradation degree and promoted bone neoformation equivalent to that of the control group.

Keywords: Calcium phosphates, Calcium phosphate cements, Phosphate glasses, Bone grafts, Bone regenerations


Sandino, C., Planell, J. A., Lacroix, D., (2008). A finite element study of mechanical stimuli in scaffolds for bone tissue engineering Journal of Biomechanics 41, (5), 1005-1014

Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study was to analyze the behavior of the mechanical stimuli within some calcium phosphate-based scaffolds in terms of stress and strain distributions in the solid material phase and fluid velocity, fluid pressure and fluid shear stress distributions in the pores filled of fluid, by means of micro computed tomographed (CT)-based finite element (FE) models. Two samples of porous materials, one of calcium phosphate-based cement and another of biodegradable glass, were used. Compressive loads equivalent to 0.5% of compression applied to the solid material phase and interstitial fluid flows with inlet velocities of 1, 10 and 100 mu m/s applied to the interconnected pores were simulated, changing also the inlet side and the viscosity of the medium. Similar strain distributions for both materials were found, with compressive and tensile strain maximal values of 1.6% and 0.6%, respectively. Mean values were consistent with the applied deformation. When 10 mu m/s of inlet fluid velocity and 1.45 Pa s viscosity, maximal values of fluid velocity were 12.76 mm/s for CaP cement and 14.87 mm/s for glass. Mean values were consistent with the inlet ones applied, and mean values of shear stress were around 5 x 10(-5) Pa. Variations on inlet fluid velocity and fluid viscosity produce proportional and independent changes in fluid velocity, fluid shear stress and fluid pressure. This study has shown how mechanical loads and fluid flow applied on the scaffolds cause different levels of mechanical stimuli within the samples according to the morphology of the materials.

Keywords: Bone tissue engineering, Finite element analysis, Scaffolds, Mechanical stimuli


Charles-Harris, M., Koch, M. A., Navarro, M., Lacroix, D., Engel, E., Planell, J. A., (2008). A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study Journal of Materials Science-Materials in Medicine , 19, (4), 1503-1513

Biodegradable polymers reinforced with an inorganic phase such as calcium phosphate glasses may be a promising approach to fulfil the challenging requirements presented by 3D porous scaffolds for tissue engineering. Scaffolds' success depends mainly on their biological behaviour. This work is aimed to the in vitro study of polylactic acid (PLA)/CaP glass 3D porous constructs for bone regeneration. The scaffolds were elaborated using two different techniques, namely solvent-casting and phase-separation. The effect of scaffolds' micro and macrostructure on the biological response of these scaffolds was assayed. Cell proliferation, differentiation and morphology within the scaffolds were studied. Furthermore, polymer/glass scaffolds were seeded under dynamic conditions in a custom-made perfusion bioreactor. Results indicate that the final architecture of the solvent-cast or phase separated scaffolds have a significant effect on cells' behaviour. Solvent-cast scaffolds seem to be the best candidates for bone tissue engineering. Besides, dynamic seeding yielded a higher seeding efficiency in comparison with the static method.

Keywords: Biocompatible Materials/ chemistry, Bone and Bones/ metabolism, Calcium Phosphates/ chemistry, Cell Differentiation, Cell Proliferation, Humans, Lactic Acid/ chemistry, Microscopy, Confocal, Microscopy, Electron, Scanning, Osteoblasts/metabolism, Permeability, Polymers/ chemistry, Porosity, Solvents/chemistry, Tissue Engineering/ methods


Koch, M. A., Engel, E., Planell, J. A., Lacroix, D., (2008). Cell seeding and characterisation of PLA/glass composite scaffolds for bone tissue engineering Journal of Biomechanics 16th Congress, European Society of Biomechanics , Elsevier (Lucerne, Switzerland) 41, (Supplement 1), S162

In this study polymer-glass composite scaffolds were characterized by permeability and porosity, two important properties for the use in perfusion bioreactors. These scaffolds were seeded with osteoblast-like cells to assess the efficiency of the used bioreactor. The used PLA/glass composite scaffolds are adequate for the perfusion culture. The high porosity and pore interconnectivity allow an even cell distribution and incorporation of a high cell number. For optimisation of the perfusion bioreactor system, further research has to be dedicated to the cell seeding and culture.

Keywords: Biomedical materials, Bioreactors, Bone, Cellular biophysics, Composite materials, Orthopaedics, Permeability, Polymers, Porosity, Porous materials, Tissue engineering