by Keyword: Calibration transfer

By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Solórzano, A., Rodríguez-Pérez, R., Padilla, M., Graunke, T., Fernandez, L., Marco, S., Fonollosa, J., (2018). Multi-unit calibration rejects inherent device variability of chemical sensor arrays Sensors and Actuators B: Chemical 265, 142-154

Inherent sensor variability limits mass-production applications for metal oxide (MOX) gas sensor arrays because calibration for replicas of a sensor array needs to be performed individually. Recently, calibration transfer strategies have been proposed to alleviate calibration costs of new replicas, but they still require the acquisition of transfer samples. In this work, we present calibration models that can be extended to uncalibrated replicas of sensor arrays without acquiring new samples, i.e., general or global calibration models. The developed methodology consists in including multiple replicas of a sensor array in the calibration process such that sensor variability is rejected by the general model. Our approach was tested using replicas of a MOX sensor array in the classification task of six gases and synthetic air, presented at different background humidity and concentration levels. Results showed that direct transfer of individual calibration models provides poor classification accuracy. However, we also found that general calibration models kept predictive performance when were applied directly to new copies of the sensor array. Moreover, we explored, through feature selection, whether particular combinations of sensors and operating temperatures can provide predictive performances equivalent to the calibration model with the complete array, favoring thereby the existence of more robust calibration models.

Keywords: Gas sensor array, MOX sensor, Robust calibration, Calibration transfer, Machine olfaction

Fonollosa, J., Fernández, L., Gutiérrez-Gálvez, A., Huerta, R., Marco, S., (2016). Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization Sensors and Actuators B: Chemical 236, 1044-1053

Inherent variability of chemical sensors makes it necessary to calibrate chemical detection systems individually. This shortcoming has traditionally limited usability of systems based on metal oxide gas sensor arrays and prevented mass-production for some applications. Here, aiming at exploring calibration transfer between chemical sensor arrays, we exposed five twin 8-sensor detection units to different concentration levels of ethanol, ethylene, carbon monoxide, or methane. First, we built calibration models using data acquired with a master unit. Second, to explore the transferability of the calibration models, we used Direct Standardization to map the signals of a slave unit to the space of the master unit in calibration. In particular, we evaluated the transferability of the calibration models to other detection units, and within the same unit measuring days apart. Our results show that signals acquired with one unit can be successfully mapped to the space of a reference unit. Hence, calibration models trained with a master unit can be extended to slave units using a reduced number of transfer samples, diminishing thereby calibration costs. Similarly, signals of a sensing unit can be transformed to match sensor behavior in the past to mitigate drift effects. Therefore, the proposed methodology can reduce calibration costs in mass-production and delay recalibrations due to sensor aging. Acquired dataset is made publicly available.

Keywords: Calibration transfer, Chemical sensors, Direct Standardization, Electronic nose, MOX sensors, Public dataset

Fernandez, L., Guney, S., Gutierrez-Galvez, A., Marco, S., (2016). Calibration transfer in temperature modulated gas sensor arrays Sensors and Actuators B: Chemical 231, 276-284

Abstract Shifts in working temperature are an important issue that prevents the successful transfer of calibration models from one chemical instrument to another. This effect is of special relevance when working with gas sensor arrays modulated in temperature. In this paper, we study the use of multivariate techniques to transfer the calibration model from a temperature modulated gas sensor array to another when a global change of temperature occurs. To do so, we built 12 identical master sensor arrays composed of three different types of commercial Figaro sensors and acquired a dataset of sensor responses to three pure substances (ethanol, acetone and butanone) dosed at 7 concentrations. The master arrays are then shifted in temperature (from −50 to 50 °C, ΔT = 10 °C) and considered as slave arrays. Data correction is performed for an increasing number of transfer samples with 4 different calibration transfer techniques: Direct Standardization, Piece-wise Direct Standardization, Orthogonal Signal Correction and Generalized Least Squares Weighting. In order to evaluate the performance of the calibration transfer, we compare the Root Mean Square Error of Prediction (RMSEP) of master and slave arrays, for each instrument correction. Best results are obtained from Piece-wise Direct standardization, which exhibits the lower RMSEP values after correction for the smaller number of transfer samples.

Keywords: Calibration transfer, Gas sensor array, MOX, Temperature modulation