Publications

by Keyword: Chemioception


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Ziyatdinov, Andrey, Calvo, Jose Maria Blanco, Lechon, Miguel, Bermudez i Badia, Sergi, Verschure, Paul F. M. J., Marco, Santiago, Perera, Alexandre, (2011). Odour mapping under strong backgrounds with a metal oxide sensor array Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 232-233

This work describes the data from navigation experiments with the mobile robot, equipped with the sensor array of three MOX gas sensors. Performed four series of measurements aim to explore the capabilities of sensor array to build the odour map with one or two odour sources in the wind tunnel space. It was demonstrated that the method based on Independent Component Analysis (ICA) is able to discriminate two odour sources, that in future can be used in the surge-and-cast robot navigation algorithm.

Keywords: Mobile robots, Data acquisition, MIS devices, Chemioception


Marco, Santiago, (2011). Signal processing for chemical sensing: Statistics or biological inspiration Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 145-146

Current analytical instrumentation and continuous sensing can provide huge amounts of data. Automatic signal processing and information evaluation is needed to overcome drowning in data. Today, statistical techniques are typically used to analyse and extract information from continuous signals. However, it is very interesting to note that biology (insects and vertebrates) has found alternative solutions for chemical sensing and information processing. This is a brief introduction to the developments in the European Project: Bio-ICT NEUROCHEM: Biologically Inspired Computation for Chemical Sensing (grant no. 216916) Fp7 project devoted to biomimetic olfactory systems.

Keywords: Signal processing, Chemioception, Neural nets, Computational complexity


Gutierrez-Galvez, Agustin, Fernandez, Luis, Marco, Santiago, (2011). Study of sensory diversity and redundancy to encode for chemical mixtures Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 147-148

Inspired by sensory diversity and redundancy at the olfactory epithelium, we have built a large chemical sensor array based on commercial MOX sensors. Different sensor families along with temperature modulation accounts for sensory diversity, whereas sensors of the same family combined with different load resistors provide redundancy to the system. To study the encoding of odor mixtures, a data collection consisting on the response of the array to 3 binary mixtures of ethanol, acetone, and butanone with 18 different concentration ratios is obtained.

Keywords: Chemioception, Sensors, Data acquisition, Temperature measurement


Tarzan-Lorente, M., Gutierrez-Galvez, A., Martinez, D., Marco, S., (2010). A biologically inspired associative memory for artificial olfaction Practica 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 6 pp.

In this paper, we propose a biologically inspired architecture for a Hopfield-like associative memory applied to artificial olfaction. The proposed algorithm captures the projection between two neural layers of the insect olfactory system (Antennal Lobe and Mushroom Body) with a kernel based projection. We have tested its classification performance as a function of the size of the training set and the time elapsed since training and compared it with that obtained with a Support Vector Machine.

Keywords: Biocomputing, Chemioception, Content-addressable storage, Hopfield neural nets, Support vector machines