Publications

by Keyword: Cognitive architecture


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moulin-Frier, C., Puigbò, J. Y., Arsiwalla, X. D., Sanchez-Fibla, M., Verschure, P., (2018). Embodied artificial intelligence through distributed adaptive control: An integrated framework ICDL-EpiRob 2017 7th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics , IEEE (Lisbon, Portugal) , 324-330

In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances in the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building on this analysis, we first propose an embodied cognitive architecture integrating heterogeneous subfields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.

Keywords: Cognitive Architectures, Embodied Artificial Intelligence, Evolutionary Arms Race, Unified Theories of Cognition


Verschure, P., (2018). Capabilities Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 211-217

This chapter introduces the “Capabilities” section of the Handbook of Living Machines. Where the previous section considered building blocks, we recognize that components or modules do not automatically make systems. Hence, in the remainder of this handbook, the emphasis is toward the capabilities of living systems and their emulation in artifacts. Capabilities often arise from the integration of multiple components and thus sensitize us to the need to develop a system-level perspective on living machines. Here we summarize and consider the 14 contributions in this section which cover perception, action, cognition, communication, and emotion, and the integration of these through cognitive architectures into systems that can emulate the full gamut of integrated behaviors seen in animals including, potentially, our own capacity for consciousness.

Keywords: Action, Cognition, Cognitive architecture, Communication, Consciousness, Emotion, Perception


Freire, I. T., Arsiwalla, X. D., Puigbò, J. Y., Verschure, P., (2018). Limits of multi-agent predictive models in the formation of social conventions Frontiers in Artificial Intelligence and Applications (ed. Falomir, Z., Gibert, K., Plaza, E.), IOS Press (Amsterdam, The Netherlands) Volume 308: Artificial Intelligence Research and Development, 297-301

A major challenge in cognitive science and AI is to understand how intelligent agents might be able to predict mental states of other agents during complex social interactions. What are the computational principles of such a Theory of Mind (ToM)? In previous work, we have investigated hypotheses of how the human brain might realize a ToM of other agents in a multi-agent social scenario. In particular, we have proposed control-based cognitive architectures to predict the model of other agents in a game-theoretic task (Battle of the Exes). Our multi-layer architecture implements top-down predictions from adaptive to reactive layers of control and bottom-up error feedback from reactive to adaptive layers. We tested cooperative and competitive strategies among different multi-agent models, demonstrating that while pure RL leads to reasonable efficiency and fairness in social interactions, there are other architectures that can perform better in specific circumstances. However, we found that even the best predictive models fall short of human data in terms of stability of social convention formation. In order to explain this gap between humans and predictive AI agents, in this work we propose introducing the notion of trust in the form of mutual agreements between agents that might enhance stability in the formation of conventions such as turn-taking.

Keywords: Cognitive Architectures, Game Theory, Multi-Agent Models, Reinforcement Learning, Theory of Mind


Moulin-Frier, C., Puigbò, J.-Y., Arsiwalla, Xerxes D., Martì Sanchez-Fibla, M., Verschure, Paul F. M. J., (2017). Embodied artificial intelligence through distributed adaptive control: An integrated framework 7th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-Epirob 2017) , IEEE (Lisbon, Portugal) , 1-8

In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.

Keywords: Cognitive Architectures, Embodied Artificial Intelligence, Evolutionary Arms Race, Unified Theories of Cognition