Publications

by Keyword: Complex networks


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Ruzzene, G., Omelchenko, I., Schöl, E., Zakharova, A., Andrzejak, R. G. , (2019). Controlling chimera states via minimal coupling modification Chaos: An Interdisciplinary Journal of Nonlinear Science 29, (5), 051103

We propose a method to control chimera states in a ring-shaped network of nonlocally coupled phase oscillators. This method acts exclusively on the network’s connectivity. Using the idea of a pacemaker oscillator, we investigate which is the minimal action needed to control chimeras. We implement the pacemaker choosing one oscillator and making its links unidirectional. Our results show that a pacemaker induces chimeras for parameters and initial conditions for which they do not form spontaneously. Furthermore, the pacemaker attracts the incoherent part of the chimera state, thus controlling its position. Beyond that, we find that these control effects can be achieved with modifications of the network’s connectivity that are less invasive than a pacemaker, namely, the minimal action of just modifying the strength of one connection allows one to control chimeras.

Keywords: Complex networks, Oscillators, Spatiotemporal phenomena


Andrzejak, R. G. , Ruzzene, G., Malvestio, I., Schindler, K., Schöl, E., Zakharova, A., (2018). Mean field phase synchronization between chimera states Chaos: An Interdisciplinary Journal of Nonlinear Science 28, (9), 091101

We study two-layer networks of identical phase oscillators. Each individual layer is a ring network for which a non-local intra-layer coupling leads to the formation of a chimera state. The number of oscillators and their natural frequencies is in general different across the layers. We couple the phases of individual oscillators in one layer to the phase of the mean field of the other layer. This coupling from the mean field to individual oscillators is done in both directions. For a sufficient strength of this interlayer coupling, the phases of the mean fields lock across the two layers. In contrast, both layers continue to exhibit chimera states with no locking between the phases of individual oscillators across layers, and the two mean field amplitudes remain uncorrelated. Hence, the networks’ mean fields show phase synchronization which is analogous to the one between low-dimensional chaotic oscillators. The required coupling strength to achieve this mean field phase synchronization increases with the mismatches in the network sizes and the oscillators’ natural frequencies.

Keywords: Chaos, Complex networks, Oscillators, Synchronisation


Vinagre, M., Aranda, J., Casals, A., (2014). An interactive robotic system for human assistance in domestic environments Computers Helping People with Special Needs (ed. Miesenberger, K., Fels, D., Archambault, D., Pe, Zagler), Springer International Publishing 8548, 152-155

This work introduces an interactive robotic system for assistance, conceived to tackle some of the challenges that domestic environments impose. The system is organized into a network of heterogeneous components that share both physical and logical functions to perform complex tasks. It consists of several robots for object manipulation, an advanced vision system that supplies in-formation about objects in the scene and human activity, and a spatial augmented reality interface that constitutes a comfortable means for interacting with the system. A first analysis based on users' experiences confirms the importance of having a friendly user interface. The inclusion of context awareness from visual perception enriches this interface allowing the robotic system to become a flexible and proactive assistant.

Keywords: Accessibility, Activity Recognition, Ambient Intelligence, Human-Robot Interaction, Robot Assistance, Augmented reality, Complex networks, Computer vision, User interfaces, Accessibility, Activity recognition, Ambient intelligence, Domestic environments, Heterogeneous component, Interactive robotics, Robot assistance, Spatial augmented realities, Human assistance, Robotics