by Keyword: Conducting polymers

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Ziyatdinov, A., Diaz, E. Fernández, Chaudry, A., Marco, S., Persaud, K., Perera, A., (2013). A software tool for large-scale synthetic experiments based on polymeric sensor arrays Sensors and Actuators B: Chemical , 177, 596-604

This manuscript introduces a software tool that allows for the design of synthetic experiments in machine olfaction. The proposed software package includes both, a virtual sensor array that reproduces the diversity and response of a polymer array and tools for data generation. The synthetic array of sensors allows for the generation of chemosensor data with a variety of characteristics: unlimited number of sensors, support of multicomponent gas mixtures and full parametric control of the noise in the system. The artificial sensor array is inspired from a reference database of seventeen polymeric sensors with concentration profiles for three analytes. The main features in the sensor data, like sensitivity, diversity, drift and sensor noise, are captured by a set of models under simplified assumptions. The generator of sensor signals can be used in applications related to test and benchmarking of signal processing methods, neuromorphic simulations in machine olfaction and educational tools. The software is implemented in R language and can be freely accessed.

Keywords: Gas Sensor Array, Conducting Polymers, Electronic Nose, Sensor Simulation, Synthetic Dataset, Benchmark, Educational Tool

Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.

Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems