by Keyword: Culture

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Horteläo, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano Article ASAP

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting

Sadowska, J. M., Guillem-Marti, J., Ginebra, M. P., (2019). The influence of physicochemical properties of biomimetic hydroxyapatite on the in vitro behavior of endothelial progenitor cells and their interaction with mesenchymal stem cells Advanced Healthcare Materials 8, (2), 1801138

Calcium phosphate (CaP) substrates are successfully used as bone grafts due to their osteogenic properties. However, the influence of the physicochemical features of CaPs in angiogenesis is frequently neglected despite it being a crucial process for bone regeneration. The present work focuses on analyzing the effects of textural parameters of biomimetic calcium deficient hydroxyapatite (CDHA) and sintered beta-tricalcium phosphate (β-TCP), such as specific surface area, surface roughness, and microstructure, on the behavior of rat endothelial progenitor cells (rEPCs) and their crosstalk with rat mesenchymal stem cells (rMSCs). The higher reactivity of CDHA results in low proliferation rates in monocultured and cocultured systems. This effect is especially pronounced for rMSCs alone, and for CDHA with a fine microstructure. In terms of angiogenic and osteogenic gene expressions, the upregulation of particular genes is especially enhanced for needle-like CDHA compared to plate-like CDHA and β-TCP, suggesting the importance not only of the chemistry of the substrate, but also of its textural features. Moreover, the coculture of rEPCs and rMSCs on needle-like CDHA results in early upregulation of osteogenic modulator, i.e., protein deglycase 1 might be a possible cause of overexpression of osteogenic-related genes on the same substrate.

Keywords: Angiogenesis, Calcium phosphates, Cocultures, Osteogenesis

Badiola-Mateos, M., Hervera, A., del Río, J. A., Samitier, J., (2018). Challenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit Frontiers in Bioengineering and Biotechnology 6, Article 194

Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.

Keywords: 3D-culture, Compartmentalized microfluidic culture systems (cμFCS), HiPSC, In-vitro models, Neuromuscular circuit

Torras, N., García-Díaz, M., Fernández-Majada, V., Martínez, E., (2018). Mimicking epithelial tissues in three-dimensional cell culture models Frontiers in Bioengineering and Biotechnology 6, Article 197

Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.

Keywords: 3D cell culture models, Biofabrication, Disease modeling, Drug screening, Epithelial barriers, Microengineered tissues, Organ-on-a-chip, Organoids

Castellanos, M. I., Guillem-Marti, J., Mas-Moruno, C., Díaz-Ricart, M., Escolar, G., Ginebra, M. P., Gil, F. J., Pegueroles, M., Manero, J. M., (2017). Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis Journal of Biomedical Materials Research - Part A , 105, (4), 973-983

Immobilization of bioactive peptide sequences on CoCr surfaces is an effective route to improve endothelialization, which is of great interest for cardiovascular stents. In this work, we explored the effect of physical and covalent immoblization of RGDS, YIGSR and their equimolar combination peptides on endothelial cells (EC) and smooth muscle cell (SMC) adhesion and on thrombogenicity. We extensively investigated using RT-qPCR, the expression by ECs cultured on functionalised CoCr surfaces of different genes. Genes relevant for adhesion (ICAM-1 and VCAM-1), vascularization (VEGFA, VEGFR-1 and VEGFR-2) and anti-thrombogenicity (tPA and eNOS) were over-expressed in the ECs grown to covalently functionalized CoCr surfaces compared to physisorbed and control surfaces. Pro-thrombogenic genes expression (PAI-1 and vWF) decreased over time. Cell co-cultures of ECs/SMCs found that functionalization increased the amount of adhered ECs onto modified surfaces compared to plain CoCr, independently of the used peptide and the strategy of immobilization. SMCs adhered less compared to ECs in all surfaces. All studied peptides showed a lower platelet cell adhesion compared to TCPS. Covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represented prevailing strategy to enhance the early stages of ECs adhesion and proliferation, while preventing SMCs and platelet adhesion.

Keywords: Cell coculture, CoCr alloy, Functionalization, Gene expression, Platelet adhesion

Giménez, A., Uriarte, J. J., Vieyra, J., Navajas, D., Alcaraz, J., (2017). Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy Microscopy Research and Technique , 80, (1), 85-96

The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell-extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM-coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state-of-the-art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions.

Keywords: 3D culture, Atomic force microscopy, Elastic modulus, Extracellular matrix, Polyacrylamide

Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning

Rigat, L., Elizalde, A., Del Portillo, H. A., Homs-Corbera, A., Samitier, J., (2014). Selective cell culturing step using laminar co-flow to enhance cell culture in splenon-on-a-chip biomimetic platform MicroTAS 2014 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences , CBMS (San Antonio, USA) , 769-771

Constant evolution and improvements on areas such as tissue engineering, microfluidics and nanotechnology have made it possible to partially close the gap between conventional in vitro cell cultures and animal model-based studies. A step forward in this field concerns organ-on-chip technologies, capable of reproducing the most relevant physiological features of an organ in a microfluidic platform. In this work we have exploited the capabilities of laminar co-flow inside our biomimetic platform, the splenon-on-a-chip, in order to enhance cell culture inside its channels to better mimic the spleen's environment. © 14CBMS.

Keywords: Cell culture, Co-flow, Laminar flow, Organ-on-a-chip, Spleen

Riggio, C., Nocentini, S., Catalayud, M. P., Goya, G. F., Cuschieri, A., Raffa, V., del Río, J. A., (2013). Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue International Journal of Molecular Sciences , 14, (6), 10852-10868

As olfactory receptor axons grow from the peripheral to the central nervous system (CNS) aided by olfactory ensheathing cells (OECs), the transplantation of OECs has been suggested as a plausible therapy for spinal cord lesions. The problem with this hypothesis is that OECs do not represent a single homogeneous entity, but, instead, a functionally heterogeneous population that exhibits a variety of responses, including adhesion and repulsion during cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. In this paper, we report a system based on modified OECs carrying magnetic nanoparticles as a proof of concept experiment enabling specific studies aimed at exploring the potential of OECs in the treatment of spinal cord injuries. Our studies have confirmed that magnetized OECs (i) survive well without exhibiting stress-associated cellular responses; (ii) in vitro, their migration can be modulated by magnetic fields; and (iii) their transplantation in organotypic slices of spinal cord and peripheral nerve showed positive integration in the model. Altogether, these findings indicate the therapeutic potential of magnetized OECs for CNS injuries.

Keywords: Magnetic nanoparticle, Nerve regeneration, Olfactory ensheathing cell, Organotypic culture

Gil, V., Del Río, J. A., (2012). Analysis of axonal growth and cell migration in 3D hydrogel cultures of embryonic mouse CNS tissue Nature Protocols 7, (2), 268-280

This protocol uses rat tail-derived type I collagen hydrogels to analyze key processes in developmental neurobiology, such as chemorepulsion and chemoattraction. The method is based on culturing small pieces of brain tissue from embryonic or early perinatal mice inside a 3D hydrogel formed by rat tail-derived type I collagen or, alternatively, by commercial Matrigel. The neural tissue is placed in the hydrogel with other brain tissue pieces or cell aggregates genetically modified to secrete a particular molecule that can generate a gradient inside the hydrogel. The present method is uncomplicated and generally reproducible, and only a few specific details need to be considered during its preparation. Moreover, the degree and behavior of axonal growth or neural migration can be observed directly using phase-contrast, fluorescence microscopy or immunocytochemical methods. This protocol can be carried out in 4 weeks.

Keywords: Cell biology, Cell culture, Developmental biology, Imaging, Model organisms, Neuroscience, Tissue culture

Mattotti, Marta, Alvarez, Zaida, Ortega, Juan A., Planell, Josep A., Engel, Elisabeth, Alcántara, Soledad, (2012). Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA Biomaterials , 33, (6), 1759-1770

Radial glia cells (RGC) are multipotent progenitors that generate neurons and glia during CNS development, and which also served as substrate for neuronal migration. After a lesion, reactive glia are the main contributor to CNS regenerative blockage, although some reactive astrocytes are also able to de-differentiate in situ into radial glia-like cells (RGLC), providing beneficial effects in terms of CNS recovery. Thus, the identification of substrate properties that potentiate the ability of astrocytes to transform into RGLC in response to a lesion might help in the development of implantable devices that improve endogenous CNS regeneration. Here we demonstrate that functional RGLC can be induced from in vitro matured astrocytes by using a precisely-sized micropatterned PMMA grooved scaffold, without added soluble or substrate adsorbed biochemical factors. RGLC were extremely organized and aligned on 2 μm line patterned PMMA and, like their embryonic counterparts, express nestin, the neuron-glial progenitor marker Pax6, and also proliferate, generate different intermediate progenitors and support and direct axonal growth and neuronal migration. Our results suggest that the introduction of line patterns in the size range of the RGC processes in implantable scaffolds might mimic the topography of the embryonic neural stem cell niche, driving endogenous astrocytes into an RGLC phenotype, and thus favoring the regenerative response in situ.

Keywords: Polymethylmethacrylate, Micropatterning, Surface topography, Astrocyte, Nerve guide, Co-culture

Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements Acta Biomaterialia 8, (1), 386-393

Calcium phosphate compounds can potentially influence cellular fate through ionic substitutions. However, to be able to turn such solution-mediated processes into successful directors of cellular response, a perfect understanding of the material-induced chemical reactions in situ is required. We therefore report on the application of home-made electrochemical microelectrodes, tested as pH and chloride sensors, for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials prepared from α-tricalcium phosphate using clinically relevant liquid to powder ratios. The small size of the electrodes allowed for online measurements in traditionally inaccessible in vitro environments, such as the immediate material-liquid interface and the interior of curing bone cement. The kinetic data obtained has been compared to theoretical sorption models, confirming that the proposed setup can provide key information for improved understanding of the biochemical environment imposed by chemically reactive biomaterials.

Keywords: Calcium phosphate, Hydroxyapatite, Ion sorption, Iridium oxide, Sensors, Animals, Biocompatible Materials, Bone Cements, Calcium Phosphates, Cells, Cultured, Chlorides, Electrochemical Techniques, Gold, Hydrogen-Ion Concentration, Hydroxyapatites, Iridium, Materials Testing, Microelectrodes, Powders, Silver, Silver Compounds, Water

Navarro, M., Pu, F., Hunt, J. A., (2012). The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells Experimental Cell Research , 318, (4), 361-370

Controlling the fate of implanted hMSCs is one of the major drawbacks to be overcome to realize tissue engineering strategies. In particular, the effect of the inflammatory environment on hMSCs behaviour is poorly understood. Studying and mimicking the inflammatory process in vitro is a very complex and challenging task that involves multiple variables. This research addressed the questions using in vitro co-cultures of primary derived hMSCs together with human peripheral blood mononucleated cells (PBMCs); the latter are key agents in the inflammatory process. This work explored the in vitro phenotypic changes of hMSCs in co-culture direct contact with monocytes and lymphocytes isolated from blood using both basal and osteogenic medium. Our findings indicated that hMSCs maintained their undifferentiated phenotype and pluripotency despite the contact with PBMCs. Moreover, hMSCs demonstrated increased proliferation and were able to differentiate specifically down the osteogenic lineage pathway. Providing significant crucial evidence to support the hypothesis that inflammation and host defence mechanisms could be utilised rather than avoided and combated to provide for the successful therapeutic application of stem cell therapies.

Keywords: Co-culture, Inflammation, Mesenchymal stem cells, Monocytes, Osteoblasts

Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite Journal of Materials Science-Materials in Medicine , 23, (10), 2509-2520

Solution-mediated reactions due to ionic substitutions are increasingly explored as a strategy to improve the biological performance of calcium phosphate-based materials. Yet, cellular response to well-defined dynamic changes of the ionic extracellular environment has so far not been carefully studied in a biomaterials context. In this work, we present kinetic data on how osteoblast-like SAOS-2 cellular activity and calcium-deficient hydroxyapatite (CDHA) influenced extracellular pH as well as extracellular concentrations of calcium and phosphate in standard in vitro conditions. Since cells were grown on membranes permeable to ions and proteins, they could share the same aqueous environment with CDHA, but still be physically separated from the material. In such culture conditions, it was observed that gradual material-induced adsorption of calcium and phosphate from the medium had only minor influence on cellular proliferation and alkaline phosphatase activity, but that competition for calcium and phosphate between cells and the biomaterial delayed and reduced significantly the cellular capacity to deposit calcium in the extracellular matrix. The presented work thus gives insights into how and to what extent solution-mediated reactions can influence cellular response, and this will be necessary to take into account when interpreting CDHA performance both in vitro and in vivo.

Keywords: Alkaline-phosphatase activity, Saos-2 cells, In-vitro, bone mineralization, Biological basis, Differentiation, Culture, Matrix, Proliferation, Topography

Carulla, Patricia, Bribian, Ana, Rangel, Alejandra, Gavin, Rosalina, Ferrer, Isidro, Caelles, Carme, Antonio del Rio, Jose, Llorens, Franc, (2011). Neuroprotective role of PrP(C) against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding Molecular Biology of the Cell , 22, (17), 3041-3054

Cellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes. Several lines of evidence implicate PrP(C) in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrP(C) has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)-mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnp(%) Jnk3(%) mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrP(C)-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrP(C) with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6-PSD-95 interaction after KA injections was favored by the absence of PrP(C). Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrP(C) against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

Keywords: Ischemic brain-injury, Prion protein PrP(C), Stress-inducible protein-1, Synaptic plasticity, Neurite outgrowth, Signaling module, Caspase-3 activation, Organotypic cultures, Cerebral-ischemia

Gustavsson, J., Ginebra, M. P., Engel, E., Planell, J., (2011). Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media Acta Biomaterialia 7, (12), 4242-4252

Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca2+ (∼50% sorption) and K+ (∼8%) as well as acidification of all media during initial contact with CDHA (48 h). Interestingly, inorganic phosphorus (Pi) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca2+ remained constant throughout the experiment, while sorption of Pi gradually decreased in McCoy medium. In great contrast, CDHA began to release Pi slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material.

Keywords: Hydroxyapatite, Bioactive materials, Cell culture medium, Ion exchange, Sorption models

del Rio, Jose Antonio, Soriano, Eduardo, (2010). Regenerating cortical connections in a dish: the entorhino-hippocampal organotypic slice co-culture as tool for pharmacological screening of molecules promoting axon regeneration Nature Protocols 5, (2), 217-226

We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.

Keywords: Cajal-retzius cells, Green-fluorescent-protein, In-vitro model, Rat hippocampus, Nervous-tissue, Brain-slices, Dentate gyrus, Gene-transfer, Cultures, Damage

Seira, O., Gavin, R., Gil, V., Llorens, F., Rangel, A., Soriano, E., del Rio, J. A., (2010). Neurites regrowth of cortical neurons by GSK3 beta inhibition independently of Nogo receptor 1 Journal of Neurochemistry , 113, (6), 1644-1658

P>Lesioned axons do not regenerate in the adult mammalian CNS, owing to the over-expression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 beta (GSK3 beta) and extracellular-related kinase (ERK) 1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: (i) cerebellar granule cells and (ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Finally, these regenerative effects were corroborated in the lesioned entorhino-hippocampal pathway in NgR1-/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.

Keywords: Axon inhibition, Nogo Receptor complex, Organotypic slice cultures, Pharmacological treatment

Aguirre, A., Planell, J. A., Engel, E., (2010). Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis Biochemical and Biophysical Research Communications , 400, (2), 284-291

Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

Keywords: Bone marrow, Endothelial progenitor cell, Co-culture, Mesenchymal stem cell, Angiogenesis

Fernandez, Javier G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small , 5, (5), 614-620

A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).

Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods

Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies Journal of Materials Science: Materials in Medicine , 20, (7), 1525-1533

Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.

Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media

Morales, R., Riss, M., Wang, L., Gavin, R., Del Rio, J. A., Alcubilla, R., Claverol-Tinture, E., (2008). Integrating multi-unit electrophysiology and plastic culture dishes for network neuroscience Lab on a Chip , 8, (11), 1896-1905

The electrophysiological characterisation of cultured neurons is of paramount importance for drug discovery, safety pharmacology and basic research in the neurosciences. Technologies offering low cost, low technical complexity and potential for scalability towards high-throughput electrophysiology on in vitro neurons would be advantageous, in particular for screening purposes. Here we describe a plastic culture substrate supporting low-complexity multi-unit loose-patch recording and stimulation of developing networks while retaining manufacturability compatible with low-cost and large-scale production. Our hybrid polydimethylsilane (PDMS)-on-polystyrene structures include chambers (6 mm in diameter) and microchannels (25 mu m x 3.7 mu m 1 mm) serving as substrate-embedded recording pipettes. Somas are plated and retained in the chambers due to geometrical constraints and their processes grow along the microchannels, effectively establishing a loose-patch configuration without human intervention. We demonstrate that off-the-shelf voltage-clamp, current-clamp and extracellular amplifiers can be used to record and stimulate multi-unit activity with the aid of our dishes. Spikes up to 50 pA in voltage-clamp and 300 mu V in current-clamp modes are recorded in sparse and bursting activity patterns characteristic of 1 week-old hippocampal cultures. Moreover, spike sorting employing principal component analysis (PCA) confirms that single microchannels support the recording of multiple neurons. Overall, this work suggests a strategy to endow conventional culture plasticware with added functionality to enable cost-efficient network electrophysiology.

Keywords: Electrophysiological characterisation, Cultured neurons, Polydimethylsilane (PDMS)-on-polystyrene structures

Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds

Navarro, M., Engel, E., Planell, J. A., Amaral, I., Barbosa, M., Ginebra, M. P., (2008). Surface characterization and cell response of a PLA/CaP glass biodegradable composite material Journal of Biomedical Materials Research - Part A , 85A, (2), 477-486

Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

Keywords: Glass, Polylactic acid, Surface analysis, Cell culture, In vitro test

Maneva-Radicheva, L., Ebert, U., Dimoudis, N., Altankov, G., (2008). Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells Histology and Histopathology , 23, (7), 833-842

A series of co-culture experiments between fibroblasts and H-460 human lung carcinoma cells were performed to learn more about the fate of adsorbed type IV collagen (Coll IV). Fibroblasts were able to spatially rearrange Coll IV in a specific linear pattern, similar but not identical to the fibronectin (FN) fibrils. Coll IV partly co-aligns with fibroblast actin cytoskeleton and transiently co-localize with FN, as well as with beta 1 and a 2 integrin clusters, suggesting a cell-dependent process. We further found that this Coll IV reorganization is suppressed in contact with H460 cells. Zymography revealed strongly elevated MMP-2 activity in supernatants of co-cultures, but no activity when fibroblasts or cancer cells were cultured alone. Thus, we provide evidence that reorganization of substrate associated Coll IV is a useful morphological approach for in vitro studies on matrix remodeling activity during tumorigenesis.

Keywords: Adsorbed collagen IV reorganization, Fibroblasts and cancer cells co-culture, MMP-2