Publications

by Keyword: DSB


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Prescott, T. J., Verschure, P. F. M. J., (2018). Living machines: An introduction Living Machines: A Handbook of Research in Biomimetic and Biohybrid Systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 3-14

Biomimetics is the development of novel technologies through the distillation of principles from the study of biological systems. Biohybrid systems are formed by at least one biological component—an already existing living system—and at least one artificial, newly engineered component. The development of either biomimetic or biohybrid systems requires a deep understanding of the operation of living systems, and the two fields are united under the theme of “living machines”—the idea that we can construct artifacts that not only mimic life but share some of the same fundamental principles. This chapter sets out the philosophy and history underlying this Living Machines approach and sets the scene for the remainder of this book.

Keywords: Biohybrids, Biological principles, Biomimetics, History of technology, Living machines, Technology ethics


Castaño, J., Herrero, A. B., Bursen, A., González, F., Marschalek, R., Gutiérrez, N. C., Menendez, P., (2016). Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair Oncotarget 7, (21), 30440-30452

The most frequent rearrangement of the human MLL gene fuses MLL to AF4 resulting in high-risk infant B-cell acute lymphoblastic leukemia (B-ALL). MLL fusions are also hallmark oncogenic events in secondary acute myeloid leukemia. They are a direct consequence of mis-repaired DNA double strand breaks (DNA-DSBs) due to defects in the DNA damage response associated with exposure to topoisomerase-II poisons such as etoposide. It has been suggested that MLL fusions render cells susceptible to additional chromosomal damage upon exposure to etoposide. Conversely, the genome-wide mutational landscape in MLL-rearranged infant B-ALL has been reported silent. Thus, whether MLL fusions compromise the recognition and/or repair of DNA damage remains unanswered. Here, the fusion proteins MLL-AF4 (MA4) and AF4-MLL (A4M) were CRISPR/Cas9-genome edited in the AAVS1 locus of HEK293 cells as a model to study MLL fusion-mediated DNA-DSB formation/repair. Repair kinetics of etoposide- and ionizing radiation-induced DSBs was identical in WT, MA4- and A4M-expressing cells, as revealed by flow cytometry, by immunoblot for γH2AX and by comet assay. Accordingly, no differences were observed between WT, MA4- and A4M-expressing cells in the presence of master proteins involved in non-homologous end-joining (NHEJ; i.e.KU86, KU70), alternative-NHEJ (Alt-NHEJ; i.e.LigIIIa, WRN and PARP1), and homologous recombination (HR, i.e.RAD51). Moreover, functional assays revealed identical NHEJ and HR efficiency irrespective of the genotype. Treatment with etoposide consistently induced cell cycle arrest in S/G2/M independent of MA4/A4M expression, revealing a proper activation of the DNA damage checkpoints. Collectively, expression of MA4 or A4M does neither influence DNA signaling nor DNA-DSB repair.

Keywords: AF4.MLL, DSB, Infant leukemia, MLL.AF4, T(4, 11)


Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)


Torrent-Burgués, J., Cea, P., Giner, I., Guaus, E., (2014). Characterization of Langmuir and Langmuir-Blodgett films of an octasubstituted zinc phthalocyanine Thin Solid Films , 556, 485-494

In this work we report the fabrication of Langmuir and Langmuir-Blodgett (LB) films of a substituted ZnPc (octakis(oxyoctyl)phthalocyanine of zinc), and their characterization by means of several techniques. These characterization techniques include surface pressure (π-A) and surface potential (ΔV-A) isotherms as well as UV-vis Reflection spectroscopy and Brewster Angle Microscopy (BAM) for the films at the air-water interface together with UV-vis absorption and IR spectroscopies and Atomic Force Microscopy (AFM) for the LB films. The π-A and ΔV-A isotherms and BAM images indicate a phase transition at a surface pressure of ca. 9 mN/m and a multilayer formation at surface pressures around 19-20 mN/m; at a surface pressure around 27 mN/m a disordered collapse of the film occurs. In addition, AFM images of LB films at π = 10 mN/m and π = 20 mN/m show a monomolecular and a multilayered film, respectively. The comparison of the UV-vis spectrum of ZnPc in solution, the reflection spectra of the Langmuir films and UV-vis spectra of LB films reveals a significant reduction in the Q band intensity for the films, indicative of an organization of ZnPc in the Langmuir and LB films versus the random distribution in solution. The UV-vis Reflection spectra are also consistent with multilayer formation at surface pressures around 19-20 mN/m. The relative intensities of the IR spectrum bands change from the KBr pellet to the LB film which is also attributable to orientation effects in the film. Cyclic voltammetric experiments of LB films incorporating the ZnPc derivative show peaks that can be correlated with redox processes occurring in the phthalocyanine ring. A small but significant influence of the surface pressure and the number of deposited layers in the electrochemical behaviour is observed. The electrochemical response of cast films exhibits some differences with respect to that of LB films which have been attributed to their different molecular organizations.

Keywords: Atomic Force Microscopy, Electrochemistry, Langmuir-Blodgett, Multilayers, Optical spectroscopy techniques, Zinc phthalocyanine, Atomic force microscopy, Electrochemistry, Interfaces (materials), Isotherms, Multilayers, Nitrogen compounds, Optical multilayers, Organic polymers, Zinc compounds, Brewster angle microscopy, Characterization techniques, Electrochemical behaviour, Langmuir and langmuir-blodgett films, Langmuir-blodgett, Optical spectroscopy techniques, UV-Vis Reflection Spectroscopy, Zinc phthalocyanines, Langmuir Blodgett films


Chaparro, J. A., Giraldo, B. F., (2014). Power index of the inspiratory flow signal as a predictor of weaning in intensive care units Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 78-81

Disconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.

Keywords: Bayes methods, Bayesian classifier, Indexes, Logistics, Niobium, Regression tree analysis, Support vector machines, Ventilation