by Keyword: Databases

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Solà-Soler, J., Giraldo, B. F., Fiz, J. A., Jané, R., (2016). Study of phase estimation methods to analyse cardiorespiratory synchronization in OSA patients Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 4280-4283

Obstructive Sleep Apnea (OSA) is a sleep disorder highly prevalent in the general population. Cardiorespiratory Phase Synchronization (CRPS) is a form of non-linear interaction between respiratory and cardiovascular systems that was found to be reduced in severe OSA patients. The Hilbert Transform (HT) method was the recommended choice for estimating the respiratory phase in CRPS studies. But we have noticed that HT provides a phase that is aligned to the transition between the exhalation and the inhalation parts of different breathing cycles, instead of being aligned to the breathing onsets. In this work we proposed a Realigned HT phase estimation method (RHT) and we compared it to the conventional HT and to the Linear Phase (LP) approximation for estimating CRPS in a database of 28 patients with different OSA severity levels. RHT provided similar synchronization percentages (%Sync) as HT, and it enhanced the significant differences in %Sync between mild and severe OSA patients. %Sync showed the highest negative correlation with the Apnea-Hypopnea Index (AHI) when using RHT (rAHI=-0.692, p<;0.001), which only had an 10% extra computational cost. On the other hand, LP method significantly overestimated %Sync especially in the more severe patients, because it was unable to track the phase non-linearities that can be observed during sleep disordered breathing. Therefore, the newly proposed RHT can be the preferred alternative over the conventional HT or the LP approximation for estimating CRPS in OSA patients.

Keywords: Correlation, Databases, Electrocardiography, Phase estimation, Sleep apnea, Synchronization, Transforms

Solà, J., Fiz, J. A., Torres, A., Jané, R., (2014). Identification of Obstructive Sleep Apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 4232-4235

Obstructive Sleep Apnea (OSA) is currently diagnosed by a full nocturnal polysomnography (PSG), a very expensive and time-consuming method. In previous studies we were able to distinguish patients with OSA through formant frequencies of breath sound during sleep. In this study we aimed at identifying OSA patients from breath sound analysis during wakefulness. The respiratory sound was acquired by a tracheal microphone simultaneously to PSG recordings. We selected several cycles of consecutive inspiration and exhalation episodes in 10 mild-moderate (AHI<;30) and 13 severe (AHI>=30) OSA patients during their wake state before getting asleep. Each episode's formant frequencies were estimated by linear predictive coding. We studied several formant features, as well as their variability, in consecutive inspiration and exhalation episodes. In most subjects formant frequencies were similar during inspiration and exhalation. Formant features in some specific frequency band were significantly different in mild OSA as compared to severe OSA patients, and showed a decreasing correlation with OSA severity. These formant characteristics, in combination with some anthropometric measures, allowed the classification of OSA subjects between mild-moderate and severe groups with sensitivity (specificity) up to 88.9% (84.6%) and accuracy up to 86.4%. In conclusion, the information provided by formant frequencies of tracheal breath sound recorded during wakefulness may allow identifying subjects with severe OSA.

Keywords: Correlation, Databases, Sensitivity, Sleep apnea, Speech, Synchronization

Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis

Mesquita, J., Poree, F., Carrault, G., Fiz, J. A., Abad, J., Jané, R., (2012). Respiratory and spontaneous arousals in patients with Sleep Apnea Hypopnea Syndrome Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6337-6340

Sleep in patients with Sleep Apnea-Hypopnea Syndrome (SAHS) is frequently interrupted with arousals. Increased amounts of arousals result in shortening total sleep time and repeated sleep-arousal change can result in sleep fragmentation. According to the American Sleep Disorders Association (ASDA) an arousal is a marker of sleep disruption representing a detrimental and harmful feature for sleep. The nature of arousals and its role on the regulation of the sleep process raises controversy and has sparked the debate in the last years. In this work, we analyzed and compared the EEG spectral content of respiratory and spontaneous arousals on a database of 45 SAHS subjects. A total of 3980 arousals (1996 respiratory and 1984 spontaneous) were analyzed. The results showed no differences between the spectral content of the two kinds of arousals. Our findings raise doubt as to whether these two kinds of arousals are truly triggered by different organic mechanisms. Furthermore, they may also challenge the current beliefs regarding the underestimation of the importance of spontaneous arousals and their contribution to sleep fragmentation in patients suffering from SAHS.

Keywords: Adaptive filters, Correlation, Databases, Electroencephalography, Hospitals, Sleep apnea, Electroencephalography, Medical signal processing, Pneumodynamics, Sleep, EEG spectral content, Organic mechanism, Respiratory, Sleep apnea hypopnea syndrome, Sleep fragmentation, Spectral content, Spontaneous arousal

Orini, Michele, Giraldo, Beatriz F., Bailon, Raquel, Vallverdu, Montserrat, Mainardi, Luca, Benito, Salvador, Diaz, Ivan, Caminal, Pere, (2008). Time-frequency analysis of cardiac and respiratory parameters for the prediction of ventilator weaning IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 2793-2796

Mechanical ventilators are used to provide life support in patients with respiratory failure. Assessing autonomic control during the ventilator weaning provides information about physiopathological imbalances. Autonomic parameters can be derived and used to predict success in discontinuing from the mechanical support. Time-frequency analysis is used to derive cardiac and respiratory parameters, as well as their evolution in time, during ventilator weaning in 130 patients. Statistically significant differences have been observed in autonomic parameters between patients who are considered ready for spontaneous breathing and patients who are not. A classification based on respiratory frequency, heart rate and heart rate variability spectral components has been proposed and has been able to correctly classify more than 80% of the cases.

Keywords: Automatic Data Processing, Databases, Factual, Electrocardiography, Humans, Models, Statistical, Respiration, Respiration, Artificial, Respiratory Insufficiency, Respiratory Mechanics, Respiratory Muscles, Signal Processing, Computer-Assisted, Time Factors, Ventilator Weaning, Ventilators, Mechanical, Work of Breathing