by Keyword: Decision-making

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Santos-Pata, D., Verschure, P., (2018). Human vicarious trial and error is predictive of spatial navigation performance Frontiers in Behavioral Neuroscience 12, Article 237

When learning new environments, rats often pause at decision points and look back and forth over their possible trajectories as if they were imagining the future outcome of their actions, a behavior termed “Vicarious trial and error” (VTE). As the animal learns the environmental configuration, rats change from deliberative to habitual behavior, and VTE tends to disappear, suggesting a functional relevance in the early stages of learning. Despite the extensive research on spatial navigation, learning and VTE in the rat model, fewer studies have focused on humans. Here, we tested whether head-scanning behaviors that humans typically exhibit during spatial navigation are as predictive of spatial learning as in the rat. Subjects performed a goal-oriented virtual navigation task in a symmetric environment. Spatial learning was assessed through the analysis of trajectories, timings, and head orientations, under habitual and deliberative spatial navigation conditions. As expected, we found that trajectory length and duration decreased with the trial number, implying that subjects learned the spatial configuration of the environment over trials. Interestingly, IdPhi (a standard metric of VTE) also decreased with the trial number, suggesting that humans benefit from the same head-orientation scanning behavior as rats at spatial decision-points. Moreover, IdPhi captured exclusively at the first decision-point of each trial, was correlated with trial trajectory duration and length. Our findings demonstrate that in VTE is a signature of the stage of spatial learning in humans, and can be used to predict performance in navigation tasks with high accuracy.

Keywords: Deliberation, Habitual, Hippocampus, Navigation, Spatial decision-making

Vouloutsi, Vasiliki, Halloy, José, Mura, Anna, Mangan, Michael, Lepora, Nathan, Prescott, T. J., Verschure, P., (2018). Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018, Paris, France, July 17–20, 2018, Proceedings , Springer International Publishing (Lausanne, Switzerland) 10928, 1-551

This book constitutes the proceedings of the 7th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2018, held in Paris, France, in July 2018. The 40 full and 18 short papers presented in this volume were carefully reviewed and selected from 60 submissions. The theme of the conference targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

Keywords: Artificial neural network, Bio-actuators, Bio-robotics, Biohybrid systems, Biomimetics, Bipedal robots, Earthoworm-like robots, Robotics, Decision-making, Tactile sensing, Soft robots, Locomotion, Insects, Sensors, Actuators, Robots, Artificial intelligence, Neural networks, Motion planning, Learning algorithms