Publications

by Keyword: Deformation


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Malandrino, Andrea, Trepat, Xavier, Kamm, Roger D., Mak, Michael, (2019). Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices PLoS Computational Biology PLOS Computational Biology , 15, (4), e1006684

The mechanical properties of the extracellular matrix (ECM)–a complex, 3D, fibrillar scaffold of cells in physiological environments–modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs–collagen I and fibrin–in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.

Keywords: Collagens, Fibrin, Extracellular matrix, Cross-linking, Cell physiology, Deformation, Fluorescence imaging, Cell biology


Li, Haiyue, Xu, Bin, Zhou, Enhua H., Sunyer, Raimon, Zhang, Yanhang, (2017). Multiscale measurements of the mechanical properties of collagen matrix ACS Biomaterials Science & Engineering 3, (11), 2815-2824

The underlying mechanisms by which extracellular matrix (ECM) mechanics influences cell and tissue function remain to be elucidated because the events associated with this process span size scales from tissue to molecular level. Furthermore, ECM has an extremely complex hierarchical 3D structure and the load distribution is highly dependent on the architecture and mechanical properties of ECM. In the present study, the macro- and microscale mechanical properties of collagen gel were studied. Dynamic rheological testing was performed to study the macroscale mechanical properties of collagen gel. The microscale mechanical properties of collagen gel were measured using optical magnetic twisting cytometry (OMTC). Ferromagnetic beads embedded in the matrix were used as mechanical probes. Our study on the multiscale mechanical properties of collage matrix suggests several interesting differences between macro and microscale mechanical properties originated from the scales of measurements. At the macroscopic scale, storage and loss modulus increase with collagen concentrations. Nonaffine collagen fibril structural network deformation plays an important role in determining the macroscopic mechanical properties of the collagen matrix. At the microscopic scale, however, the local mechanical properties are less sensitive to changes in collagen concentration because of the more immediate/direct deformation of collagen fibrils in the OMTC measurements through forces exerted by locally attached ferromagnetic beads. The loss modulus is more affected by the local interstitial fluid environment, leading to a rather dramatic increase in viscosity with frequency, especially at higher frequencies (>10 Hz). A finite element model was developed to study the geometric factors in the OMTC measurements when the collagen matrix was considered to be hyperelastic. Our results show that the geometric factors are dependent on collagen concentration, or the stiffness of matrix, when nonlinear material properties of the matrix are considered, and thus interpretation of the apparent modulus from OMTC measurements should be conducted carefully.

Keywords: Keywords: collagen, Extracellular matrix, Geometric factor, Nonaffine deformation, Optical magnetic twisting cytometry


Aviles, A. I., Alsaleh, S. M., Hahn, J. K., Casals, A., (2017). Towards retrieving force feedback in robotic-assisted surgery: A supervised neuro-recurrent-vision approach IEEE Transactions on Haptics , 10, (3), 431-443

Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.

Keywords: Computer-assisted surgery, Deep networks, Force estimation, Visual deformation


Aviles, A. I., Casals, A., (2014). Interpolation based deformation model for minimally invasive beating heart surgery IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 372-375

Heart motion compensation is a key issue in medical robotics due to the benefits that minimally invasive beating heart surgery offers over traditional cardiac surgery. Although different proposals have been presented, nowadays, there is not yet a suitable solution working in real clinical environments due to the lack of robustness of existing methods. The process of heart motion estimation required to produce the compensation actions can be tackled as a process of three iterative steps. The first based on generating a deformation model from the processing of a video sequence of the beating heart. The selection of a deformation model is crucial in the sense that it has to offer both valuable information and good computational performance. These characteristics are required when the reaction time has a significant repercussion over the system behavior, as in this case. This paper, presents a computational analysis of deformation model based on interpolation methods. In particular, wavelet and thin-plate splines are evaluated. The significance of this study relies on the fact that it is a reference starting point of reference for creating both a common framework and a robust solution. In addition, the obtained results will contribute to increase the robustness from the initial stage of the solution.

Keywords: Deformation model, Wavelets, Computer performance, Radial basis functions, Interpolation methods


Aviles, AngelicaI, Casals, Alicia, (2014). On genetic algorithms optimization for heart motion compensation Advances in Intelligent Systems and Computing ROBOT2013: First Iberian Robotics Conference (ed. Armada, Manuel A., Sanfeliu, Alberto, Ferre, Manuel), Springer International Publishing 252, 237-244

Heart motion compensation is a challenging problem within medical robotics and it is still considered an open research area due to the lack of robustness. As it can be formulated as an energy minimization problem, an optimization technique is needed. The selection of an adequate method has a significant impact over the global solution. For this reason, a new methodology is presented here for solving heart motion compensation in which the central topic is oriented to increase robustness with the goal of achieving a balance between efficiency and efficacy. Particularly, genetic algorithms are used as optimization technique since they can be adapted to any real application, complex and oriented to work in real-time problems.

Keywords: Genetic Algorithms, Deformation, Stochastic Optimization, Beating Heart Surgery, Robotic Assisted Surgery


Muñoz, Luis Miguel, Casals, Alícia, Amat, Josep, Puig-Vidal, Manel, Samitier, Josep, (2005). Improved AFM scanning methodology with adaptation to the target shape C3 - Proceedings - IEEE International Conference on Robotics and Automation ICRA 2005 2005 IEEE International Conference on Robotics and Automation , IEEE (Barcelona, Spain) , 1529-1534

This paper presents a manipulation and measurement aid for tasks carried out in micro-nano environments operating with scanning AFM. In teleoperated manipulation or measurement over a given point of the target, where a slow and precise movement is necessary, the developed system increases the accuracy in this point producing a space deformation. In automatic scanning, the adjusted selection of the target, through assisted image segmentation, enables to reduce the working time.

Keywords: Assisted teleoperation, Image segmentation, Micro-nano manipulation, Workspace deformation