by Keyword: Enzyme

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Monteil, Vanessa, Kwon, Hyesoo, Prado, Patricia, Hagelkrüys, Astrid, Wimmer, Reiner A., Stahl, Martin, Leopoldi, Alexandra, Garreta, Elena, Hurtado Del Pozo, Carmen, Prosper, Felipe, Romero, Juan Pablo, Wirnsberger, Gerald, Zhang, Haibo, Slutsky, Arthur S., Conder, Ryan, Montserrat, Nuria, Mirazimi, Ali, Penninger, Josef M., (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 Cell Epub ahead of print,

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.

Keywords: COVID-19, Angiotensin converting enzyme 2, Blood vessels, Human organoids, Kidney, Severe acute respiratory syndrome coronavirus, Spike glycoproteins, Treatment

Wang, Lei, Hortelão, Ana C., Huang, Xin, Sánchez, Samuel, (2019). Lipase-powered mesoporous silica nanomotors for triglyceride degradation Angewandte Chemie International Edition 58, (24), 7992-7996

We report lipase-based nanomotors that are capable of enhanced Brownian motion over long periods of time in triglyceride solution and of degrading triglyceride droplets that mimic “blood lipids”. We achieved about 40 min of enhanced diffusion of lipase-modified mesoporous silica nanoparticles (MSNPs) through a biocatalytic reaction between lipase and its corresponding water-soluble oil substrate (triacetin) as fuel, which resulted in an enhanced diffusion coefficient (ca. 50 % increase) at low triacetin concentration (<10 mm). Lipase not only serves as the power engine but also as a highly efficient cleaner for the triglyceride droplets (e.g., tributyrin) in PBS solution, which could yield potential biomedical applications, for example, for dealing with diseases related to the accumulation of triglycerides, or for environmental remediation, for example, for the degradation of oil spills.

Keywords: Enzyme nanomotors, Lipase, Micromotors, Oil removal, Self-propulsion

Arqué, Xavier, Romero-Rivera, Adrian, Feixas, Ferran, Patiño, Tania, Osuna, Sílvia, Sánchez, Samuel, (2019). Intrinsic enzymatic properties modulate the self-propulsion of micromotors Nature Communications 10, (1), 2826

Bio-catalytic micro- and nanomotors self-propel by the enzymatic conversion of substrates into products. Despite the advances in the field, the fundamental aspects underlying enzyme-powered self-propulsion have rarely been studied. In this work, we select four enzymes (urease, acetylcholinesterase, glucose oxidase, and aldolase) to be attached on silica microcapsules and study how their turnover number and conformational dynamics affect the self-propulsion, combining both an experimental and molecular dynamics simulations approach. Urease and acetylcholinesterase, the enzymes with higher catalytic rates, are the only enzymes capable of producing active motion. Molecular dynamics simulations reveal that urease and acetylcholinesterase display the highest degree of flexibility near the active site, which could play a role on the catalytic process. We experimentally assess this hypothesis for urease micromotors through competitive inhibition (acetohydroxamic acid) and increasing enzyme rigidity (β-mercaptoethanol). We conclude that the conformational changes are a precondition of urease catalysis, which is essential to generate self-propulsion.

Keywords: Biocatalysis, Immobilized enzymes, Molecular machines and motors

Ma, X., Sánchez, S., (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme Tetrahedron , 73, (33), 4883-4886

Enzyme triggered bio-catalytic reactions convert chemical energy into mechanical force to power micro/nano-machines. Though there have been reports about enzymes powered micro/nano-motors, enzymatic Janus nano-motor smaller than 100 nm has not been reported yet. Here, we prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to the nano-architecture. The nano-motors are chemically powered by the decomposition of H2O2 triggered by the enzyme catalase located at one face of the nanoparticles. The self-propulsion is characterized by dynamic light scattering (DLS) and optical microscopy. The apparent diffusion coefficient was enhanced by 150% compared to their Brownian motion at low H2O2 concentration (i.e. below 3 wt%). Mesoporous nano-motors might serve as active drug delivery nano-systems in future biomedical applications such as intracellular drug delivery.

Keywords: Enzyme catalysis, Janus particles, Mesoporous silica, Nano-motors, Nanomachine, Self-propulsion

Giannotti, M. I., Abasolo, Ibane, Oliva, Mireia, Andrade, Fernanda, García-Aranda, Natalia, Melgarejo, Marta, Pulido, Daniel, Corchero, José Luis, Fernández, Yolanda, Villaverde, Antonio, Royo, Miriam, Garcia-Parajo, Maria F., Sanz, Fausto, Schwartz Jr, Simó, (2016). Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders ACS Applied Materials & Interfaces 8, (39), 25741–25752

Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.

Keywords: Enzyme replacement therapy, Fabry disease, Lysosomal delivery, Nanomedicine, Polyelectrolyte complexes, Trimethyl chitosan, α-galactosidase A

Ma, X., Jannasch, A., Albrecht, U. R., Hahn, K., Miguel-López, A., Schäffer, E., Sánchez, S., (2015). Enzyme-powered hollow mesoporous Janus nanomotors Nano Letters 15, (10), 7043-7050

The development of synthetic nanomotors for technological applications in particular for life science and nanomedicine is a key focus of current basic research. However, it has been challenging to make active nanosystems based on biocompatible materials consuming nontoxic fuels for providing self-propulsion. Here, we fabricate self-propelled Janus nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs), which are powered by biocatalytic reactions of three different enzymes: catalase, urease, and glucose oxidase (GOx). The active motion is characterized by a mean-square displacement (MSD) analysis of optical video recordings and confirmed by dynamic light scattering (DLS) measurements. We found that the apparent diffusion coefficient was enhanced by up to 83%. In addition, using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.

Keywords: Enzyme, Hollow mesoporous silica nanoparticles, Hybrid motors, Janus particles, Nanomotors, Optical tweezers

Nonaka, P. N., Uriarte, J. J., Campillo, N., Melo, E., Navajas, D., Farré, R., Oliveira, L. V. F., (2014). Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate Respiratory Physiology & Neurobiology , 200, 1-5

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (RL) and elastance (EL) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

Keywords: Lung bioengineering, Lung decellularization, Organ scaffold, dodecyl sulfate sodium, animal tissue, article, artificial ventilation, compliance (physical), controlled study, enzyme chemistry, extracellular matrix, female, flow, lung, lung decellularization, lung pressure, lung resistance, mouse, nonhuman, positive end expiratory pressure, priority journal, rigidity, tissue engineering, trachea pressure

Artés, Juan M., Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2011). Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy ACS Nano 5, (3), 2060-2066

We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current-distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

Keywords: Long-range electron transfer (LRET), Distance decay constant, Single-molecule electrochemistry, Redox enzyme, Metalloprotein, Blue copper protein, Azurin, Electrochemical scanning tunneling microscopy and spectroscopy, Nanoelectrodes, Debye length, Electrochemical charge screening

Barthelmebs, L., Jonca, J., Hayat, A., Prieto-Simon, B., Marty, J. L., (2011). Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine Food Control , 22, (5), 737-743

Ochratoxin A (OTA) is one of the most important mycotoxins because of its high toxicity to both humans and animals and its occurrence in a number of basic foods and agro-products. The need to develop high-performing methods for OTA analysis able to improve the traditional ones is evident. In this work, through in vitro SELEX (Systematic Evolution of Ligands by EXponential enrichment) two aptamers, designated H8 and H12 were produced that bind with nanomolar affinity with Ochratoxin A (OTA). Two strategies were investigated by using an indirect and a direct competitive Enzyme-Linked Aptamer Assay (ELAA) and were compared to the classical competitive Enzyme-Linked Immunosorbent Assay (ELISA) for the determination of OTA in spiked red wine samples. The limit of detection attained (1 ng/mL), the midpoint value obtained (5 ng/mL) and the analysis time needed (125 min) for the real sample analysis validate the direct competitive ELAA as useful screening tool for routine use in the control of OTA level in wine.

Keywords: Competitive Enzyme-Linked Aptamer Assay (ELAA), DNA aptamer, Ochratoxin A, SELEX, Wine analysis

Torrents, E., Sjoberg, B. M., (2010). Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis Biological Chemistry , 391, (2-3), 229-234

Bacillus anthracis is a severe mammalian pathogen. The deoxyribonucleotides necessary for DNA replication and repair are provided via the ribonucleotide reductase (RNR) enzyme. RNR is also important for spore germination and cell proliferation upon infection. We show that the expression of B. anthracis class Ib RNR responds to the environment that the pathogen encounters upon infection. We also show that several anti-proliferative agents (radical scavengers) specifically inhibit the B. anthracis RNR. Owing to the importance of RNR in the pathogenic infection process, our results highlight a promising potential to inhibit the growth of B. anthracis early during infection.

Keywords: Anthrax, Antibacterial drug, Antibacterial target, Enzyme inhibition

Mills, C. A., Pla, M., Martin, C., Lee, M., Kuphal, M., Sisquella, X., Martinez, E., Errachid, A., Samitier, J., (2007). Structured thin organic active layers and their use in electrochemical biosensors Measurement & Control , 40, (3), 88-91