Publications

by Keyword: Experimental approaches


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Almendros, I., Otero, J., Falcones, B., Marhuenda, E., Navajas, D., Farre, R., (2019). Lung extracellular matrix hydrogels for mesenchymal stem cells 3d bioprinting Mechanisms of lung injury and repair Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium (ESR 2019 Congress) , European Respiratory Society (Madrid, Spain) 54, PA3859

Introduction: The role of lung mesenchymal stem cells (L-MSCs) in pulmonary diseases remain to be fully elucidated. A relevant open question is to understand the crosstalk between L-MSCs and lung extracellular matrix (L-ECM). To this end, a suitable 3D model including MSCs and L-ECM is of high interest. Aim: To study how L-MSCs can be 3D bioprinted, cultured and harvested from L-ECM hydrogels. Methods: L-MSCs were isolated from Sprague-Dawley rats following established protocols. Porcine lungs were decellularized by a detergent-based procedure. The resulting L-ECM was freeze-dried, milled in liquid nitrogen and enzymatically digested by pepsin. After pH neutralization, resulting pre-gels were mixed with L-MSCs and 3D bioprinted by using F-127 as structural and sacrificial hydrogel. Cells were harvested from the 3D hydrogel by digestion with collagenase after 7 days of 3D culture and reseeded in standard plastic 2D culture plates. Cell viability and spatial distribution within the hydrogel was evaluated by live/dead (Thermo Scientific, MA, USA) staining and laser scanning confocal imaging. Biological activity was evaluated by hydrogel contraction assays. Results: Viability higher than 90% and homogenous 3D spatial distribution of L-MSCs were observed. Cells contracted the hydrogel up to 75% of their original size, showing that L-MSCs had an active interaction with the L-ECM. Recovered L-MSCs from the bioprinted structures were able to spread and proliferate when reseeded in plastic. Conclusion: Cell-laden hydrogels based on L-ECM can be used as bioink to build realistic 3D models for studying cell-matrix crosstalk in respiratory diseases.

Keywords: Lung mechanics, Experimental approaches