by Keyword: Extracellular-Matrix

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hristova, K., Pecheva, E., Pramatarova, L., Altankov, G., (2011). Improved interaction of osteoblast-like cells with apatite-nanodiamond coatings depends on fibronectin Journal of Materials Science: Materials in Medicine , 22, (8), 1891-1900

New apatite (AP)/nanodiamond (ND) coating has been developed to improve physical and biological properties of stainless steel (SS) versus single AP coating. Homogeneously electrodeposited AP-ND layer demonstrates increased mechanical strength, interlayer cohesion and ductility. In the absence of serum, osteoblast-like MG63 cells attach well but poorly spread on both AP and AP-ND substrata. Pre-adsorption with serum or fibronectin (FN) improves the cellular interaction-an effect that is better pronounced on the AP-ND coating. In single protein adsorption study fluorescein isothiocyanate-labeled FN (FITC-FN) shows enhanced deposition on the AP-ND layer consistent with the significantly improved cell adhesion, spreading and focal adhesions formation (in comparison to SS and AP), particularly at low FN adsorption concentrations (1 mu g/ml). Higher FN concentrations (20 mu g/ml) abolish this difference suggesting that the promoted cellular interaction of serum (where FN is low) is caused by the greater affinity for FN. Moreover, it is found that MG63 cells tend to rearrange both adsorbed and secreted FN on the AP-ND layer suggesting facilitated FN matrix formation.

Keywords: Extracellular-matrix, Protein adsorption, Integrins, Adhesion, Biomaterials, Surfaces, Polymerization, Composite, Implants, Titanium

Gugutkov, Dencho, Gonzalez-Garcia, Cristina, Rodriguez Hernandez, Jose Carlos, Altankov, George, Salmeron-Sanchez, Manuel, (2009). Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers Langmuir , 25, (18), 10893-10900

Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, allow one to rationalize the process. Further, the role of the spatial organization of the FN network on the cellular response is investigated through its adsorption on electrospun fibers. Randomly oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones.

Keywords: AFM, Cell-adhesion, Dependent conformations, Hydrophobic surfaces, Extracellular-matrix, Bound fibronectin, Polymer surfaces, Integrin binding, Biocompatibility, Adsorption

Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology , 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton

Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry , 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein