Publications

by Keyword: Finite element analysis


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Wills, C. R., Malandrino, A., Van Rijsbergen, M., Lacroix, D., Ito, K., Noailly, J., (2016). Simulating the sensitivity of cell nutritive environment to composition changes within the intervertebral disc Journal of the Mechanics and Physics of Solids , 90, 108-123

Altered nutrition in the intervertebral disc affects cell viability and can generate catabolic cascades contributing to extracellular matrix (ECM) degradation. Such degradation is expected to affect couplings between disc mechanics and nutrition, contributing to accelerate degenerative processes. However, the relation of ECM changes to major biophysical events within the loaded disc remains unclear. A L4-L5 disc finite element model including the nucleus (NP), annulus (AF) and endplates was used and coupled to a transport-cell viability model. Solute concentrations and cell viability were evaluated along the mid-sagittal plane path. A design of experiment (DOE) was performed. DOE parameters corresponded to AF and NP biochemical tissue measurements in discs with different degeneration grades. Cell viability was not affected by any parameter combinations defined. Nonetheless, the initial water content was the parameter that affected the most the solute contents, especially glucose. Calculations showed that altered NP composition could negatively affect AF cell nutrition. Results suggested that AF and NP tissue degeneration are not critical to nutrition-related cell viability at early-stage of disc degeneration. However, small ECM degenerative changes may alter significantly disc nutrition under mechanical loads. Coupling disc mechano-transport simulations and enzyme expression studies could allow identifying spatiotemporal sequences related to tissue catabolism.

Keywords: Cell nutrition, Finite element analysis, Intervertebral disc degeneration, Multiphysics, Tissue composition


Sánchez Egea, Antonio J., Valera, Marius, Parraga Quiroga, Juan Manuel, Proubasta, Ignasi, Noailly, J., Lacroix, Damien, (2014). Impact of hip anatomical variations on the cartilage stress: A finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects Clinical Biomechanics , 29, (4), 444-450

AbstractBackground Hip arthritis is a pathology linked to hip-cartilage degeneration. Although the aetiology of this disease is not well defined, it is known that age is a determinant risk factor. However, hip arthritis in young patients could be largely promoted by biomechanical factors. The objective of this paper is to analyze the impact of some normal anatomical variations on the cartilage stress distributions numerically predicted at the hip joint during walking. Methods A three-dimensional finite element model of the femur and the pelvis with the most relevant axial components of muscle forces was used to simulate normal walking activity. The hip anatomical condition was defined by: neck shaft angle, femoral anteversion angle, and acetabular anteversion angle with a range of 110-130º, 0-20º, and 0-20º, respectively. The direct boundary method was used to simulate the hip contact. Findings The hydrostatic stress found at the cartilage and labrum showed that a ± 10º variation with respect to the reference brings significant differences between the anatomic models. Acetabular anteversion angle of 0º and femoral anteversion angle of 0º were the most affected anatomical conditions with values of hydrostatic stress in the cartilage near 5 MPa under compression. Interpretation Cartilage stresses and contact areas were equivalent to the results found in literature and the most critical anatomical regions in terms of tissue loads were in a good accordance with clinical evidence. Altogether, results showed that decreasing femoral or acetabular anteversion angles isolately causes a dramatic increase in cartilage loads.

Keywords: Hip arthritis, Neck shaft angle, Femoral and acetabular anteversions, Cartilage load, Hip joint contact, Finite element analysis


Fumagalli, L., Gramse, G., Esteban-Ferrer, D., Edwards, M. A., Gomila, G., (2010). Quantifying the dielectric constant of thick insulators using electrostatic force microscopy Applied Physics Letters , 96, (18), 183107

Quantitative measurement of the low-frequency dielectric constants of thick insulators at the nanoscale is demonstrated utilizing ac electrostatic force microscopy combined with finite-element calculations based on a truncated cone with hemispherical apex probe geometry. The method is validated on muscovite mica, borosilicate glass, poly(ethylene naphthalate), and poly(methyl methacrylate). The dielectric constants obtained are essentially given by a nanometric volume located at the dielectric-air interface below the tip, independently of the substrate thickness, provided this is on the hundred micrometer-length scale, or larger.

Keywords: Borosilicate glasses, Finite element analysis, Insulating thin films, Mica, Nanostructured materials, Permittivity, Polymers, Scanning probe microscopy


Milan, J. L., Planell, J. A., Lacroix, D., (2010). Simulation of bone tissue formation within a porous scaffold under dynamic compression Biomechanics and Modeling in Mechanobiology 9, (5), 583-596

A computational model of mechanoregulation is proposed to predict bone tissue formation stimulated mechanically by overall dynamical compression within a porous polymeric scaffold rendered by micro-CT. Dynamic compressions of 0.5-5% at 0.0025-0.025 s(-1) were simulated. A force-controlled dynamic compression was also performed by imposing a ramp of force from 1 to 70 N. The model predicts homogeneous mature bone tissue formation under strain levels of 0.5-1% at strain rates of 0.0025-0.005 s(-1). Under higher levels of strain and strain rates, the scaffold shows heterogeneous mechanical behaviour which leads to the formation of a heterogeneous tissue with a mixture of mature bone and fibrous tissue. A fibrous tissue layer was also predicted under the force-controlled dynamic compression, although the same force magnitude was found promoting only mature bone during a strain-controlled compression. The model shows that the mechanical stimulation of bone tissue formation within a porous scaffold closely depends on the loading history and on the mechanical behaviour of the scaffold at local and global scales.

Keywords: Bone tissue engineering, Scaffold, Tissue differentiation, Mechanoregulation, Finite element analysis


Salleras, M., Carmona, M., Marco, S., (2010). Issues in the use of thermal transients to achieve accurate time-constant spectrums and differential structure functions IEEE Transactions on Advanced Packaging , 33, (4), 918-923

An analysis of accuracy of time-constant spectrum extraction from thermal transients has been performed. Numerical calculations based on analytical models and finite element method simulations have been used in order to obtain the thermal transients. Simple geometries have been used such that analytical expressions for their time-constant spectrums are known. Results show that a large error in the time-constant spectrum is obtained for very small rms error ( 1 mK) in the thermal transient. The estimation problem is ill-conditioned. Moreover, the differential structure function shows a low accuracy identifying stacked structures. The initial part of the differential structure function shows numerical oscillations and the final part has an asymptotic behavior to infinity that has been identified as an artifact related to errors in the time-constant spectrum estimation. Peak identification from the differential structure function heavily depends on an accurate determination of the time-constant spectrum. The limited spectral resolution and dynamic range of the differential structure function are a direct consequence of the time-constant spectrum imprecision.

Keywords: Finite element analysis, Spectral analysis


Milan, J. L., Planell, J. A., Lacroix, D., (2009). Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold Biomaterials 30, (25), 4219-4226

A computational model based on finite element method (FEM) and computational fluid dynamics (CFD) is developed to analyse the mechanical stimuli in a composite scaffold made of polylactic acid (PLA) matrix with calcium phosphate glass (Glass) particles. Different bioreactor loading conditions were simulated within the scaffold. In vitro perfusion conditions were reproduced in the model. Dynamic compression was also reproduced in an uncoupled fluid-structure scheme: deformation level was studied analyzing the mechanical response of scaffold alone under static compression while strain rate was studied considering the fluid flow induced by compression through fixed scaffold. Results of the model show that during perfusion test an inlet velocity of 25mum/s generates on scaffold surface a fluid flow shear stress which may stimulate osteogenesis. Dynamic compression of 5% applied on the PLA-Glass scaffold with a strain rate of 0.005s(-1) has the benefit to generate mechanical stimuli based on both solid shear strain and fluid flow shear stress on large scaffold surface area. Values of perfusion inlet velocity or compression strain rate one order of magnitude lower may promote cell proliferation while values one order of magnitude higher may be detrimental for cells. FEM-CFD scaffold models may help to determine loading conditions promoting bone formation and to interpret experimental results from a mechanical point of view.

Keywords: Bone tissue engineering, Scaffold, Finite element analysis, Computational fluid dynamics, Mechanical stimuli


Malandrino, A., Planell, J. A., Lacroix, D., (2009). Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation Journal of Biomechanics 42, (16), 2780-2788

A statistical factorial analysis approach was conducted on a poroelastic finite element model of a lumbar intervertebral disc to analyse the influence of six material parameters (permeabilities of annulus, nucleus, trabecular vertebral bone, cartilage endplate and Young's moduli of annulus and nucleus) on the displacement, fluid pore pressure and velocity fields. Three different loading modes were investigated: compression, flexion and axial rotation. Parameters were varied considering low and high levels in agreement with values found in the literature for both healthy and degenerated lumbar discs. Results indicated that annulus stiffness and cartilage endplate permeability have a strong effect on the overall fluid- and solid-phase responses in all loading conditions studied. Nucleus stiffness showed its main relevance in compression while annulus permeability influenced mainly the annular pressure field. This study confirms the permeability's central role in biphasic modelling and highlights for the lumbar disc which experiments of material property characterization should be performed. Moreover, such sensitivity study gives important guidelines in poroelastic material modelling and finite element disc validation.

Keywords: Intervertebral disc, Permeability, Fractional factorial design, Design of experiments, Finite element analysis


Sandino, C., Planell, J. A., Lacroix, D., (2008). A finite element study of mechanical stimuli in scaffolds for bone tissue engineering Journal of Biomechanics 41, (5), 1005-1014

Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study was to analyze the behavior of the mechanical stimuli within some calcium phosphate-based scaffolds in terms of stress and strain distributions in the solid material phase and fluid velocity, fluid pressure and fluid shear stress distributions in the pores filled of fluid, by means of micro computed tomographed (CT)-based finite element (FE) models. Two samples of porous materials, one of calcium phosphate-based cement and another of biodegradable glass, were used. Compressive loads equivalent to 0.5% of compression applied to the solid material phase and interstitial fluid flows with inlet velocities of 1, 10 and 100 mu m/s applied to the interconnected pores were simulated, changing also the inlet side and the viscosity of the medium. Similar strain distributions for both materials were found, with compressive and tensile strain maximal values of 1.6% and 0.6%, respectively. Mean values were consistent with the applied deformation. When 10 mu m/s of inlet fluid velocity and 1.45 Pa s viscosity, maximal values of fluid velocity were 12.76 mm/s for CaP cement and 14.87 mm/s for glass. Mean values were consistent with the inlet ones applied, and mean values of shear stress were around 5 x 10(-5) Pa. Variations on inlet fluid velocity and fluid viscosity produce proportional and independent changes in fluid velocity, fluid shear stress and fluid pressure. This study has shown how mechanical loads and fluid flow applied on the scaffolds cause different levels of mechanical stimuli within the samples according to the morphology of the materials.

Keywords: Bone tissue engineering, Finite element analysis, Scaffolds, Mechanical stimuli


Charles-Harris, M., del Valle, S., Hentges, E., Bleuet, P., Lacroix, D., Planell, J. A., (2007). Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds Biomaterials 28, (30), 4429-4438

This study involves the mechanical and structural characterisation of completely degradable scaffolds for tissue engineering applications. The scaffolds are a composite of polylactic acid (PLA) and a soluble calcium phosphate glass, and are thus completely degradable. A factorial experimental design was applied to optimise scaffold composition prior to simultaneous microtomography and micromechanical testing. Synchrotron X-ray microtomography combined with in situ micromechanical testing was performed to obtain three-dimensional 3D images of the scaffolds under compression. The 3D reconstruction was converted into a finite element mesh which was validated by simulating a compression test and comparing it with experimental results. The experimental design reveals that larger glass particle and pore sizes reduce the stiffness of the scaffolds, and that the porosity is largely unaffected by changes in pore sizes or glass weight content. The porosity ranges between 93% and 96.5%, and the stiffness ranges between 50 and 200 kPa. X-ray projections show a homogeneous distribution of the glass particles within the PLA matrix, and illustrate pore-wall breakage under strain. The 3D reconstructions are used qualitatively to visualise the distribution of the phases of the composite material, and to follow pore deformation under compression. Quantitatively, scaffold porosity, pore interconnectivity and surface/volume ratios have been calculated. Finite element analysis revealed the stress and strain distribution in the scaffold under compression, and could be used in the future to characterise the mechanical properties of the scaffolds.

Keywords: Synchrotron x-ray microtomography, Mechanical test, Biodegradable, Glass, Scaffold, Finite element analysis