by Keyword: Fracture

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Miquel, Joan, Santana, F., Palau, E., Vinagre, M., Langohr, K., Casals, A., Torrens, C., (2018). Retaining or excising the supraspinatus tendon in complex proximal humeral fractures treated with reverse prosthesis: a biomechanical analysis in two different designs Archives of Orthopaedic and Trauma Surgery , 138, (11), 1533-1539

We aimed to biomechanically evaluate the effect of the supraspinatus tendon on tuberosity stability using two different reverse shoulder arthroplasty (RSA) models for complex proximal humeral fractures (PHFs).

Keywords: Tuberosity reconstruction, Reverse shoulder arthroplasty, Supraspinatus, Cadaveric study, Rotator cuff excision, Complex proximal humeral fractures

Carrera, I., Gelber, P. E., Chary, G., González-Ballester, M. A., Monllau, J. C., Noailly, J., (2016). Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration International Orthopaedics , 40, (10), 2163-2169

Purpose: To assess, with finite element (FE) calculations, whether immediate weight bearing would be possible after surgical stabilization either with cannulated screws or with a locking plate in a split fracture of the lateral tibial plateau (LTP). Methods: A split fracture of the LTP was recreated in a FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. A split fracture of the lateral tibial plateau was reproduced by using geometrical data from patient radiographs. A locking screw plate (LP) and a cannulated screw (CS) systems were modelled to virtually reduce the fracture and 80 kg static body-weight was simulated. Results: While the simulated body-weight led to clinically acceptable interfragmentary motion, possible traumatic bone shear stresses were predicted nearby the cannulated screws. With a maximum estimation of about 1.7 MPa maximum bone shear stresses, the Polyax system might ensure more reasonable safety margins. Conclusions: Split fractures of the LTP fixed either with locking screw plate or cannulated screws showed no clinically relevant IFM in a FE model. The locking screw plate showed higher mechanical stability than cannulated screw fixation. The locking screw plate might also allow full or at least partial weight bearing under static posture at time zero.

Keywords: Bone fixation, Finite element, Fracture fixation, Interfragmentary motion, Tibial plateau fractures, Weight bearing

Stocchi, A., Lauke, B., Giannotti, M. I., Vázquez, A., Bernal, C., (2013). Tensile response and fracture and failure behavior of jute fabrics-flyash-vinylester hybrid composites Fibers and Polymers , 14, (2), 285-291

In this work, hybrid materials consisting on a vinylester matrix simultaneaously reinforced with jute woven fabrics and flyash particles were prepared. The tensile response and the fracture and failure behavior of these hybrid composites were investigated. Thermal stability of these materials was also studied. The aim was to obtain an environmentally friendly hybrid material with a good balance of tensile and fracture properties at relatively low cost. The effect of a novel treatment for the jute fabrics on the hybrids mechanical and fracture properties was investigated. The best balance of tensile and fracture properties was obtained for the hybrid consisting of fabrics treated with alkali under stress and fly ashes which also exhibited relatively high thermal stability.

Keywords: Natural fibers, Fly ash, Hybrid composite, Mechanical properties, Fracture