Publications

by Keyword: Gas plume


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Burgues, J., Marco, S., (2019). Feature extraction of gas sensor signals for gas source localization ISOEN 2019 18th International Symposium on Olfaction and Electronic Nose , IEEE (Fukuoka, Japan) , 1-3

This paper explores which signal features of a gas sensor are optimum for assessing the proximity to a gas source in an open environment. Specifically, we compare three statistical descriptors of the signal (mean, variance and maximum response) against the 'bout' frequency, a feature computed in the derivative of the response. The experimental setup includes a generator of turbulent plumes and a sensing board composed of three metal oxide (MOX) sensors of different types. The main conclusion is that the maximum response is the most robust feature across the three sensors. The 'bout' frequency can be very sensitive to an additional parameter (the noise threshold).

Keywords: Feature extraction, Gas plume, Gas sensors, Gas source localization, MOX, Signal processing


Burgues, J., Valdez, L. F., Marco, S., (2019). High-bandwidth e-nose for rapid tracking of turbulent plumes ISOEN 2019 18th International Symposium on Olfaction and Electronic Nose , IEEE (Fukuoka, Japan) , 1-3

The low bandwidth of metal oxide semiconductor (MOX) sensors (<0.1 Hz) is a major hurdle to gas source localization (GSL) in turbulent environments where detection of intermittent odor patches is key. We present a fast-response miniaturized electronic nose (Fast-eNose) composed of four naked MOX sensors and a digital band-pass filter that can boost the bandwidth of the system close to 1 Hz. The device was attached to a fast photo-ionization detector (330 Hz) to quantify the response time during exposure to turbulent gas plumes. The results indicate that the digital filter can improve the response time by at least a factor of 4, bringing new possibilities to mobile robot olfaction.

Keywords: CFD, Gas plume, Gas sensors, MOX, Response time, Signal processing