Publications

by Keyword: Gas sensors


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Burgués, Javier, Hernández, Victor, Lilienthal, Achim J., Marco, Santiago, (2019). Smelling nano aerial vehicle for gas source localization and mapping Sensors 19, (3), 478

This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor, the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion. The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor signals at different distances to a gas source. A second contribution is adapting the ‘bout’ detection algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the MOX sensor response, for real-time operation. The third and main contribution is the experimental validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment (160 m2) with a gas source placed in challenging positions for the drone, for example hidden in the ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on the instantaneous gas sensor response and the other one based on the bout frequency. From the measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min) a 3D map of the gas distribution and identified the most likely source location. Using the bout frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has the potential to perform gas sensing tasks in complex environments.

Keywords: Robotics, Signal processing, Electronics, Gas source localization, Gas distribution mapping, Gas sensors, Drone, UAV, MOX sensor, Quadcopter


Burgués, J., Jiménez-Soto, J. M., Marco, S., (2018). Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models Analytica Chimica Acta , 1013, 13-25

The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity.

Keywords: Semiconductor gas sensors, Metal-oxide sensors, Limit of detection, Non-linear, Humidity interference, Temperature modulation


Burgués, Javier, Hernandez, Victor, Lilienthal, Achim J., Marco, Santiago, (2018). 3D Gas distribution with and without artificial airflow: An experimental study with a grid of metal oxide semiconductor gas sensors Proceedings EUROSENSORS 2018 , MDPI (Graz, Austria) 2, (13), 911

Gas distribution modelling can provide potentially life-saving information when assessing the hazards of gaseous emissions and for localization of explosives, toxic or flammable chemicals. In this work, we deployed a three-dimensional (3D) grid of metal oxide semiconductor (MOX) gas sensors deployed in an office room, which allows for novel insights about the complex patterns of indoor gas dispersal. 12 independent experiments were carried out to better understand dispersion patters of a single gas source placed at different locations of the room, including variations in height, release rate and air flow profiles. This dataset is denser and richer than what is currently available, i.e., 2D datasets in wind tunnels. We make it publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.

Keywords: MOX, Metal oxide, Flow visualization, Gas sensors, Gas distribution mapping, Sensor grid, 3D, Gas source localization, Indoor


Sheik, S., Marco, S., Huerta, R., Fonollosa, J., (2014). Continuous prediction in chemoresisitive gas sensors using reservoir computing Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 843-846

Although Metal Oxide (MOX) sensors are predominant choices to perform fundamental tasks of chemical detection, their use has been mainly limited to relatively controlled scenarios where a gas sensor array is first exposed to a reference, then to the gas sample, and finally to the reference again to recover the initial state. In this paper we propose the use of MOX sensors along with Reservoir Computing algorithms to identify chemicals of interest. Our approach allows continuous gas monitoring in simple experimental setups without the requirement of acquiring recovery transient of the sensors, thereby making the system specifically suitable for online monitoring applications.

Keywords: Chemical sensing, Reservoir computing, Gas sensors, Dynamic gas mixtures, Electronic nose


Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2010). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Sensors and Actuators B: Chemical , 146, (2), 477-482

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process. Results are obtained in real frigorific storage conditions: that is, at low measurement temperatures with variations of relative humidity.

Keywords: Gas sensors, Electronic nose, Spoilage process, Temperature modulation, Bream sparus-aurata, Electronic nose, Freshness, Quality, Sardines, Storage


Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S., (2010). Fault detection, identification, and reconstruction of faulty chemical gas sensors under drift conditions, using Principal Component Analysis and Multiscale-PCA Theoretical or Mathematical; Experimental The 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 7 pp.

Statistical methods like Principal Components Analysis (PCA) or Partial Least Squares (PLS) and multiscale approaches, have been reported to be very useful in the task of fault diagnosis of malfunctioning sensors for several types of faults. In this work, we compare the performance of PCA and Multiscale-PCA on a fault based on a change of sensor sensitivity. This type of fault affects chemical gas sensors and it is one of the effects of the sensor poisoning. These two methods will be applied on a dataset composed by the signals of 17 conductive polymer gas sensors, measuring three analytes at several concentration levels during 10 months. Therefore, additionally to performance's comparison, both method's stability along the time will be tested. The comparison between both techniques will be made regarding three aspects; detection, identification of the faulty sensors and correction of faulty sensors response.

Keywords: Fault diagnosis, Gas sensors, Principal component analysis


Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2009). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 483-486

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus Aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process

Keywords: Gas sensors, Electrochemical sensors, Chromatography


Perera, A., Rock, F., Montoliu, I., Weimar, U., Marco, S., (2009). Total solvent amount and human panel test predictions using gas sensor fast chromatography and multivariate linear and non-linear processing Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 572-573

Data from a Gas Sensor based Chromatography instrument is used in order to replicate output from a human panel and the estimation of the total solvent amount measured by and FID device in a packaging application. The system is trained on different packaging sample properties and validated with unseen combinations of materials, varnishes and production processes. This contribution will show the difficulties on the prediction of the output of the human panel, and the success on the prediction of the total amount of solvent in the sample

Keywords: Gas sensors, Solvent prediction