Publications

by Keyword: Glycogen


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Duran, Jordi, Brewer, M. Kathryn, Hervera, Arnau, Gruart, Agnès, del Rio, Jose Antonio, Delgado-García, José M., Guinovart, Joan J., (2020). Lack of astrocytic glycogen alters synaptic plasticity but not seizure susceptibility Molecular Neurobiology on-line publication

Brain glycogen is mainly stored in astrocytes. However, recent studies both in vitro and in vivo indicate that glycogen also plays important roles in neurons. By conditional deletion of glycogen synthase (GYS1), we previously developed a mouse model entirely devoid of glycogen in the central nervous system (GYS1Nestin-KO). These mice displayed altered electrophysiological properties in the hippocampus and increased susceptibility to kainate-induced seizures. To understand which of these functions are related to astrocytic glycogen, in the present study, we generated a mouse model in which glycogen synthesis is eliminated specifically in astrocytes (GYS1Gfap-KO). Electrophysiological recordings of awake behaving mice revealed alterations in input/output curves and impaired long-term potentiation, similar, but to a lesser extent, to those obtained with GYS1Nestin-KO mice. Surprisingly, GYS1Gfap-KO mice displayed no change in susceptibility to kainate-induced seizures as determined by fEPSP recordings and video monitoring. These results confirm the importance of astrocytic glycogen in synaptic plasticity.

Keywords: Astrocyte, Epilepsy, Glycogen, Long-term potentiation, Metabolism, Plasticity.


Llorens, Franc, Zafar, Saima, Ansoleaga, Belén, Shafiq, Mohsin, Blanco, Rosi, Carmona, Marga, Grau-Rivera, Oriol, Nos, Carlos, Gelpí, Ellen, del Río, José Antonio, Zerr, Inga, Ferrer, Isidre, (2015). Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease Neuropathology and Applied Neurobiology , 41, (5), 631-645

Aims Creutzfeldt-Jakob disease (CJD) is a rapid progressive neurological disease leading to dementia and death. Prion biomarkers are altered in the cerebrospinal fluid (CSF) of CJD patients, but the pathogenic mechanisms underlying these alterations are still unknown. The present study examined prion biomarker levels in the brain and CSF of sporadic CJD (sCJD) cases and their correlation with neuropathological lesion profiles. Methods The expression levels of 14-3-3, Tau, phospho-Tau and α-synuclein were measured in the CSF and brain of sCJD cases in a subtype- and region-specific manner. In addition, the activity of prion biomarker kinases, the expression levels of CJD hallmarks and the most frequent neuropathological sCJD findings were analysed. Results Prion biomarkers levels were increased in the CSF of sCJD patients; however, correlations between mRNA, total protein and their phosphorylated forms in brain were different. The observed downregulation of the main Tau kinase, GSK3, in sCJD brain samples may help to explain the differential phospho-Tau/Tau ratios between sCJD and other dementias in the CSF. Importantly, CSF biomarkers levels do not necessarily correlate with sCJD neuropathological findings. Interpretation Present findings indicate that prion biomarkers levels in sCJD tissues and their release into the CSF are differentially regulated following specific modulated responses, and suggest a functional role for these proteins in sCJD pathogenesis.

Keywords: Creutzfeldt-Jakob disease, Prion Protein, Cerebrospinal fluid, Prion Biomarkers, disease subtype, Glycogen synthase kinase 3