Publications

by Keyword: Glycosylation


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Veeregowda, D. H., van der Mei, H. C., de Vries, J., Rutland, M. W., Valle-Delgado, J. J., Sharma, P. K., Busscher, H. J., (2012). Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation Clinical Oral Investigations , 16, (5), 1499-1506

Objectives: Toothbrushing, though aimed at biofilm removal, also affects the lubricative function of adsorbed salivary conditioning films (SCFs). Different modes of brushing (manual, powered, rotary-oscillatory or sonically driven) influence the SCF in different ways. Our objectives were to compare boundary lubrication of SCFs after different modes of brushing and to explain their lubrication on the basis of their roughness, dehydrated layer thickness, and degree of glycosylation. A pilot study was performed to relate in vitro lubrication with mouthfeel in human volunteers. Materials and methods: Coefficient of friction (COF) on 16-h-old SCFs after manual, rotary-oscillatory, and sonically driven brushing was measured using colloidal probe atomic force microscopy (AFM). AFM was also used to assess the roughness of SCFs prior to and after brushing. Dehydrated layer thicknesses and glycosylation of the SCFs were determined using X-ray photoelectron spectroscopy. Mouthfeel after manual and both modes of powered brushing were evaluated employing a split-mouth design. Results: Compared with unbrushed and manually or sonically driven brushed SCFs, powered rotary-oscillatory brushing leads to deglycosylation of the SCF, loss of thickness, and a rougher film. Concurrently, the COF of a powered rotary-oscillatory brushed SCF increased. Volunteers reported a slightly preferred mouthfeel after sonic brushing as compared to powered rotating-oscillating brushing. Conclusion: Deglycosylation and roughness increase the COF on SCFs. Clinical relevance: Powered rotary-oscillatory brushing can deglycosylate a SCF, leading to a rougher film surface as compared with manual and sonic brushing, decreasing the lubricative function of the SCF. This is consistent with clinical mouthfeel evaluation after different modes of brushing.

Keywords: AFM, Friction, Glycosylation, Salivary conditioning film, Toothbrushing, XPS


Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking