by Keyword: Hepatic stellate cells

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Klein, S., Frohn, F., Magdaleno, F., Reker-Smit, C., Schierwagen, R., Schierwagen, I., Uschner, F. E., van Dijk, F., Fürst, D. O., Djudjaj, S., Boor, P., Poelstra, K., Beljaars, L., Trebicka, J., (2019). Rho-kinase inhibitor coupled to peptide-modified albumin carrier reduces portal pressure and increases renal perfusion in cirrhotic rats Scientific Reports 9, (1), 2256

Rho-kinase (ROCK) activation in hepatic stellate cells (HSC) is a key mechanism promoting liver fibrosis and portal hypertension (PTH). Specific delivery of ROCK-inhibitor Y-27632 (Y27) to HSC targeting mannose-6-phosphate-receptors reduces portal pressure and fibrogenesis. In decompensated cirrhosis, presence of ascites is associated with reduced renal perfusion. Since in cirrhosis, platelet-derived growth factor receptor beta (PDGFRβ) is upregulated in the liver as well as the kidney, this study coupled Y27 to human serum albumin (HSA) substituted with PDGFRβ-recognizing peptides (pPB), and investigated its effect on PTH in cirrhotic rats. In vitro collagen contraction assays tested biological activity on LX2 cells. Hemodynamics were analyzed in BDL and CCl4 cirrhotic rats 3 h, 6 h and 24 h after i.v. administration of Y27pPBHSA (0.5/1 mg/kg b.w). Phosphorylation of moesin and myosin light chain (MLC) assessed ROCK activity in liver, femoral muscle, mesenteric artery, kidney and heart. Three Y27 molecules were coupled to pPBHSA as confirmed by HPLC/MS, which was sufficient to relax LX2 cells. In vivo, Y27pPBHSA-treated rats exhibited lower portal pressure, hepatic vascular resistance without effect on systemic vascular resistance, but a tendency towards lower cardiac output compared to non-treated cirrhotic rats. Y27pPBHSA reduced intrahepatic resistance by reduction of phosphorylation of moesin and MLC in Y27pPBHSA-treated cirrhotic rats. Y27pPBHSA was found in the liver of rats up to 6 hours after its injection, in the HSC demonstrated by double-immunostainings. Interestingly, Y27pPBHSA increased renal arterial flow over time combined with an antifibrotic effect as shown by decreased renal acta2 and col1a1 mRNA expression. Therefore, targeting the ROCK inhibitor Y27 to PDGFRβ decreases portal pressure with potential beneficial effects in the kidney. This unique approach should be tested in human cirrhosis.

Keywords: Hepatic stellate cells, Hepatorenal syndrome

Magdaleno, Fernando, Schierwagen, R., Uschner, Frank E., Trebicka, J., (2018). “Tipping” extracellular matrix remodeling towards regression of liver fibrosis: novel concepts Minerva Gastroenterologica e Dietologica , 64, (1), 51-61

Fibrosis development was initially conceived as an incessant progressive condition. Nowadays, it has become evident that fibrotic tissue undergoes a continuous two-way process: fibrogenesis and fibrinolysis, characterizing the remodeling of extracellular matrix (ECM). However, in established fibrosis, this two-way process is tipped towards fibrogenesis and this leads to a self-perpetuating accumulation of ECM, a distinct metabolic unit, together with other cells and processes promoting fibrosis deposition. Several mechanisms promote fibrosis regression, such as degradation of ECM, infiltration of restorative macrophages, prevention of the epithelial-mesenchymal transition of hepatocytes, restoration of the liver sinusoidal endothelial cells’ differentiation phenotype, and reversion to quiescence, apoptosis and senescence of hepatic stellate cells (HSC). Hence, fibrosis is the result of an unbalanced two-way process of matrix remodeling. At the late stage of the disease, antifibrotic interventions could become necessary to reverse self-perpetuating fibrogenesis and accelerate regression of fibrosis even if cause and cofactors of hepatic injury have been eliminated. This review outlines some of the important mechanisms leading towards regression of liver fibrosis.

Keywords: Hepatic stellate cells, Extracellular matrix, remodeling, Rho-associated kinases, Janus kinases