Publications

by Keyword: Indexes


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Sola-Soler, J., Giraldo, B. F., Fiz, J. A., Jane, R., (2017). Relationship between heart rate excursion and apnea duration in patients with Obstructive Sleep Apnea Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1539-1542

Obstructive Sleep Apnea (OSA) is a sleep disorder with a high prevalence in the general population. It is a risk factor for many cardiovascular diseases, and an independent risk factor for cerebrovascular diseases such as stroke. After an apnea episode, both arterial blood pressure and cerebral blood flow velocity change in function of the apnea duration (AD). We hypothesized that the relative excursion in heart rate (AHR), defined as the percentage difference between the maximum and the minimum heart rate values associated to an obstructive apnea event, is also related to AD. In this work we studied the relationship between apnea-related AHR and AD in a population of eight patients with severe OSA. AHR and AD showed a moderate but statistically significant correlation (p <; 0.0001) in a total of 1454 obstructive apneas analyzed. The average heart rate excursion for apneas with AD ≥ 30s (ΔHR = 31.29 ± 6.64%) was significantly greater (p = 0.0002) than for apneas with AD ∈ [10,20)s (ΔHR = 18.14±3.08%). We also observed that patients with similar Apnea-Hypopnea Index (AHI) may exhibit remarkably different distributions of AHR and AD, and that patients with a high AHI need not have a higher average AHR than others with a lower severity index. We conclude that the overall apnea-induced heart rate excursion is partially explained by the duration of apnoeic episodes, and it may be a simple measure of the cardiovascular stress associated with OSA that is not directly reflected in the AHI.

Keywords: Heart rate, Sleep apnea, Correlation, Indexes, Sociology, Blood vessels


Chaparro, J. A., Giraldo, B. F., (2014). Power index of the inspiratory flow signal as a predictor of weaning in intensive care units Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 78-81

Disconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.

Keywords: Bayes methods, Bayesian classifier, Indexes, Logistics, Niobium, Regression tree analysis, Support vector machines, Ventilation


Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers


Hernansanz, A., Amat, J., Casals, A., (2012). Virtual Robot: A new teleoperation paradigm for minimally invasive robotic surgery IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 749-754

This paper presents a novel teleoperation paradigm, the Virtual Robot (VR), focused on facilitating the surgeon tasks in minimally invasive robotic surgery. The VR has been conceived to increase the range of applicability of traditional master slave teleoperation architectures by means of an automatic cooperative behavior that assigns the execution of the ongoing task to the most suitable robot. From the user's point of view, the VR internal operation must be automatic and transparent. A set of evaluation indexes have been developed to obtain the suitability of each robot as well as an algorithm to determine the optimal instant of time to execute a task transfer. Several experiments demonstrate the usefulness of the VR, as well as indicates the next steps of the research.

Keywords: Cameras, Collision avoidance, Indexes, Joints, Robots, Surgery, Trajectory, Medical robotics, Surgery, Telerobotics, VR internal operation, Automatic cooperative behavior, Evaluation indexes, Master slave teleoperation architectures, Minimally invasive robotic surgery, Task transfer, Virtual robot