Publications

by Keyword: Interneuron


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Bos, J. J., Vinck, M., Marchesi, P., Keestra, A., van Mourik-Donga, L. A., Jackson, J. C., Verschure, P., Pennartz, C. M. A., (2019). Multiplexing of self and other information in hippocampal ensembles Cell Reports 29, (12), 3859-3871.e6

In addition to coding a subject’s location in space, the hippocampus has been suggested to code social information, including the spatial position of conspecifics. “Social place cells” have been reported for tasks in which an observer mimics the behavior of a demonstrator. We examine whether rat hippocampal neurons may encode the behavior of a minirobot, but without requiring the animal to mimic it. Rather than finding social place cells, we observe that robot behavioral patterns modulate place fields coding animal position. This modulation may be confounded by correlations between robot movement and changes in the animal’s position. Although rat position indeed significantly predicts robot behavior, we find that hippocampal ensembles code additional information about robot movement patterns. Fast-spiking interneurons are particularly informative about robot position and global behavior. In conclusion, when the animal’s own behavior is conditional on external agents, the hippocampus multiplexes information about self and others.

Keywords: CA1, Decoding, Information theory, Interneuron, Mutual information, Place cells, Place field, Tobot, Docial behavior, Tetrode


Urrea, Laura, Ferrer, Isidro, Gavín, Rosalina, del Río, José Antonio, (2017). The cellular prion protein (PrPC) as neuronal receptor for α-synuclein Prion , 11, (4), 226-233

The term ‘prion-like’ is used to define some misfolded protein species that propagate intercellularly, triggering protein aggregation in recipient cells. For cell binding, both direct plasma membrane interaction and membrane receptors have been described for particular amyloids. In this respect, emerging evidence demonstrates that several β-sheet enriched proteins can bind to the cellular prion protein (PrPC). Among other interactions, the physiological relevance of the binding between β-amyloid and PrPC has been a relevant focus of numerous studies. At the molecular level, published data point to the second charged cluster domain of the PrPC molecule as the relevant binding domain of the β-amyloid/PrPC interaction. In addition to β-amyloid, participation of PrPC in binding α-synuclein, responsible for neurodegenerative synucleopathies, has been reported. Although results indicate relevant participation of PrPC in the spreading of α-synuclein in living mice, the physiological relevance of the interaction remains elusive. In this comment, we focus our attention on summarizing current knowledge of PrPC as a receptor for amyloid proteins and its physiological significance, with particular focus on α-synuclein.

Keywords: α-synuclein, Charged cluster domain, Interneuronal transport, LAG3, Neurodegeneration, PrPC, Parkinson disease