Publications

by Keyword: Ion mobility spectrometry


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Contreras, M. D. M., Jurado-Campos, N., Sánchez-Carnerero Callado, C., Arroyo-Manzanares, N., Fernández, L., Casano, S., Marco, S., Arce, L., Ferreiro-Vera, C., (2018). Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis sativa L. chemotypes Sensors and Actuators B: Chemical 273, 1413-1424

Existing analytical techniques used for the determination of cannabinoids in Cannabis sativa L. (Cannabis) plants mostly rely on chromatography-based methods. As a rapid alternative for the direct analysis of them, thermal desorption (TD)-ion mobility spectrometry (IMS) was used for obtaining spectral fingerprints of single cannabinoids from Cannabis plant extracts and from plant residues on hands after their manipulation. The ionization source was 63Ni, with automatic switchable polarity. Although in both ionization modes there were signals in the TD-IMS spectra of the plant extracts and residues that could be assigned to concrete cannabinoids and chemotypes, most of them could not be clearly distinguished. Alternatively, the global spectral data of the plant extracts and residues were pre-processed and then, using principal component analysis (PCA)-linear discriminant analysis (LDA), grouped in function of their chemotype in a more feasible way. Using this approach, the possibility of false positive responses was also studied analyzing other non-Cannabis plants and tobacco, which were clustered in a different group to those of Cannabis. Therefore, TD-IMS, as analytical tool, and PCA-LDA, as a strategy for data reduction and pattern recognition, can be applied for on-site chemotaxonomic discrimination of Cannabis varieties and detection of illegal marijuana since the IMS equipment is portable and the analysis time is highly short.

Keywords: Cannabis sativa L., Cannabinoids, Chemometrics, ChemotypeIon mobility spectrometry


Oller-Moreno, S., Singla-Buxarrais, G., Jiménez-Soto, J. M., Pardo, Antonio, Garrido-Delgado, R., Arce, L., Marco, Santiago, (2015). Sliding window multi-curve resolution: Application to gas chromatography - Ion Mobility Spectrometry Sensors and Actuators B: Chemical 15th International Meeting on Chemical Sensors , Elsevier (Buenos Aires, Argentina) 217, 13-21

Abstract Blind Source Separation (BSS) techniques aim to extract a set of source signals from a measured mixture in an unsupervised manner. In the chemical instrumentation domain source signals typically refer to time-varying analyte concentrations, while the measured mixture is the set of observed spectra. Several techniques exist to perform BSS on Ion Mobility Spectrometry, being Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) and Multivariate Curve Resolution (MCR) the most commonly used. The addition of a multi-capillary gas chromatography column using the ion mobility spectrometer as detector has been proposed in the past to increase chemical resolution. Short chromatography times lead to high levels of co-elution, and ion mobility spectra are key to resolve them. For the first time, BSS techniques are used to deconvolve samples of the gas chromatography - ion mobility spectrometry tandem. We propose a method to extract spectra and concentration profiles based on the application of MCR in a sliding window. Our results provide clear concentration profiles and pure spectra, resolving peaks that were not detected by the conventional use of MCR. The proposed technique could also be applied to other hyphenated instruments with similar strong co-elutions.

Keywords: Blind Source Separation, Multivariate Curve Resolution, Ion Mobility Spectrometry, Gas Chromatography, Hyphenated instrumentation, SIMPLISMA, co-elution


Karpas, Z., Guamán, A. V., Pardo, A., Marco, S., (2013). Comparison of the performance of three ion mobility spectrometers for measurement of biogenic amines Analytica Chimica Acta 758, (3), 122-129

The performance of three different types of ion mobility spectrometer (IMS) devices: GDA2 with a radioactive ion source (Airsense, Germany), UV-IMS with a photo-ionization source (G.A.S. Germany) and VG-Test with a corona discharge source (3QBD, Israel) was studied. The gas-phase ion chemistry in the IMS devices affected the species formed and their measured reduced mobility values. The sensitivity and limit of detection for trimethylamine (TMA), putrescine and cadaverine were compared by continuous monitoring of a stream of air with a given concentration of the analyte and by measurement of headspace vapors of TMA in a sealed vial. Preprocessing of the mobility spectra and the effectiveness of multivariate curve resolution techniques (MCR-LASSO) improved the accuracy of the measurements by correcting baseline effects and adjusting for variations in drift time as well as enhancing the signal to noise ratio and deconvolution of the complex data matrix to their pure components. The limit of detection for measurement of the biogenic amines by the three IMS devices was between 0.1 and 1.2 ppm (for TMA with the VG-Test and GDA, respectively) and between 0.2 and 0.7 ppm for putrescine and cadaverine with all three devices. Considering the uncertainty in the LOD determination there is almost no statistically significant difference between the three devices although they differ in their operating temperature, ionization method, drift tube design and dopant chemistry. This finding may have general implications on the achievable performance of classic IMS devices.

Keywords: Biogenic amines, Comparison of performance, Ion mobility spectrometry, Sensitivity, Signal processing, Vapor concentration


Karpas, Zeev, Guamán, Ana V., Calvo, Daniel, Pardo, Antonio, Marco, Santiago, (2012). The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine Talanta , 93, 200-205

The off-flavor of “tainted wine” is attributed mainly to the presence of 2,4,6-trichloroanisole (2,4,6-TCA) in the wine. In the present study the atmospheric pressure gas-phase ion chemistry, pertaining to ion mobility spectrometry, of 2,4,6-trichloroanisole was investigated. In positive ion mode the dominant species is a monomer ion with a lower intensity dimer species with reduced mobility values (K0) of 1.58 and 1.20 cm2 V−1 s−1, respectively. In negative mode the ion with K0 = 1.64 cm2 V−1 s−1 is ascribed to a trichlorophenoxide species while the ions with K0 = 1.48 and 1.13 cm2 V−1 s−1 are attributed to chloride attachment adducts of a TCA monomer and dimer, respectively. The limit of detection of the system for 2,4,6-TCA dissolved in dichloromethane deposited on a filter paper was 2.1 ug and 1.7 ppm in the gas phase. In ethanol and in wine the limit of detection is higher implying that pre-concentration and pre-separation are required before IMS can be used to monitor the level of TCA in wine.

Keywords: 2,4,6-Trichloroanisole, Gas phase ion chemistry, Ion mobility spectrometry, "Tainted wine"


Pomareda, Víctor, Guamán, Ana V., Mohammadnejad, Masoumeh, Calvo, Daniel, Pardo, Antonio, Marco, Santiago, (2012). Multivariate curve resolution of nonlinear ion mobility spectra followed by multivariate nonlinear calibration for quantitative prediction Chemometrics and Intelligent Laboratory Systems , 118, 219-229

In this work, a new methodology to analyze spectra time-series obtained from ion mobility spectrometry (IMS) has been investigated. The proposed method combines the advantages of multivariate curve resolution-alternating least squares (MCR-ALS) for an optimal physical and chemical interpretation of the system (qualitative information) and a multivariate calibration technique such as polynomial partial least squares (poly-PLS) for an improved quantification (quantitative information) of new samples. Ten different concentrations of 2-butanone and ethanol were generated using a volatile generator based on permeation tubes. The different concentrations were measured with IMS. These data present a non-linear behaviour as substance concentration increases. Although MCR-ALS is based on a bilinear decomposition, non-linear behaviour can be modelled adding new components to the model. After spectral pre-processing, MCR-ALS was applied aiming to get information about the ionic species that appear in the drift tube and their evolution with the analyte concentration. By resolving the IMS data matrix, concentration profiles and pure spectra of the different ionic species have been obtained for both analytes. Finally, poly-PLS was used in order to build a calibration model using concentration profiles obtained from MCR-ALS for ethanol and 2-butanone. The results, with more than 99% of explained variance for both substances, show the feasibility of using MCR-ALS to resolve IMS datasets. Furthermore, similar or better prediction accuracy is achieved when concentration profiles from MCR-ALS are used to build a calibration model (using poly-PLS) compared to other standard univariate and multivariate calibration methodologies.

Keywords: Ion Mobility Spectrometry, Multivariate Curve Resolution, Gas phase ion chemistry, Multivariate calibration


Garrido-Delgado, R., Arce, L., Guaman, A. V., Pardo, A., Marco, S., Valcárcel, M., (2011). Direct coupling of a gas-liquid separator to an Ion Mobility Spectrometer for the classification of different white wines using chemometrics tools Talanta , 84, (2), 471-479

The potential of a vanguard technique as is the Ion Mobility Spectrometry with Ultraviolet ionization (UV-IMS) coupled to a Continuous Flow System (CFS) have been demonstrated in this work by using a Gas Phase Separator (GPS). This vanguard system (CFS-GPS-UV-IMS) has been used for the analysis of different types of white wines to obtain a characteristic profile for each type of wine and their posterior classification using different chemometric tools. Precision of the method was 3.1% expressed as relative standard deviation. A deep chemometric study was carried out for the classification of the four types of wines selected. The best classification performance was obtained by first reducing the data dimensionality by Principal Component Analysis (PCA) followed by Linear Discriminant Analysis (LDA) and finally using a K-Nearest Neighbour (kNN) classifier. The classification rate in an independent validation set were 92.0% classification rate value with confidence interval [89.0%, 95.0%] at P = 0.05 confidence level. The same white wines analyzed by using CFS-GPS-UV-IMS were analyzed by using Gas Chromatography with a Flame Detector (GC-FID) as conventional technique. The chromatographic method used for the determination of superior alcohols in wine samples shown in the Regulation CEE 1238/1992 was selected to carry out the analysis of the same samples set and later the classification using appropriate chemometric tools. In this case, strategies PCA-LDA and kNN classifier were also used for the correct classification of the wine samples. This combination showed similar results to the ones obtained with the proposed method.

Keywords: Classification, White wines, Ultraviolet-Ion Mobility Spectrometry, Gas Phase Separate, Vanguard method, Continuous Flow System, Chemometric analysis.


Pomareda, V., Calvo, D., Pardo, A., Marco, S., (2010). Hard modeling multivariate curve resolution using LASSO: Application to ion mobility spectra Chemometrics and Intelligent Laboratory Systems , 104, (2), 318-332

Multivariate Curve Resolution (MCR) aims to blindly recover the concentration profile and the source spectra without any prior supervised calibration step. It is well known that imposing additional constraints like positiveness, closure and others may improve the quality of the solution. When a physico-chemical model of the process is known, this can be also introduced constraining even more the solution. In this paper, we apply MCR to Ion Mobility Spectra. Since instrumental models suggest that peaks are of Gaussian shape with a width depending on the instrument resolution, we introduce that each source is characterized by a linear superposition of Gaussian peaks of fixed spread. We also prove that this model is able to fit wider peaks departing from pure Gaussian shape. Instead of introducing a non-linear Gaussian peak fitting, we use a very dense model and rely on a least square solver with L1-norm regularization to obtain a sparse solution. This is accomplished via Least Absolute Shrinkage and Selection Operator (LASSO). Results provide nicely resolved concentration profiles and spectra improving the results of the basic MCR solution.

Keywords: Blind source separation, Ion mobility spectrometry, Multivariate curve resolution, Sparse solution, Non negative matrix factorization


Marco, S., Pomareda, V., Pardo, A., Kessler, M., Goebel, J., Mueller, G., (2009). Blind source separation for ion mobility spectra Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 551-553

Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications.. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modem methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

Keywords: Ion Mobility Spectrometry (IMS), Blind Source Separation (BSS), Multivariate Analysis, SIMPLISMA, MCR, Non-Negative Matrix Factorization (NMF)


Montoliu, I., Pomareda, V., Kalms, A., Pardo, A., Gobel, J., Kessler, M., Muller, G., Marco, S., (2009). Resolution of ion mobility spectra for the detection of hazardous substances in real sampling conditions Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 576-578

This work presents the possibilities offered by a blind source separation method such Multivariate Curve Resolution- Alternating Least Squares (MCR-ALS) in the analysis of Ion Mobility Spectra (IMS). Two security applications are analyzed in this context: the detection of TNT both in synthetic and real samples. Results obtained show the possibilities offered by the direct analysis of the drift time spectra when an appropriate resolution method is used.

Keywords: Ion Mobility Spectrometry, Multivariate Curve Resolution, Security, LIMS, MCR-ALS