by Keyword: Kernel

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Rodriguez, J., Schulz, S., Voss, A., Giraldo, B. F., (2020). Cardiorespiratory and vascular variability analysis to classify patients with ischemic and dilated cardiomyopathy* Engineering in Medicine & Biology Society (EMBC) 42nd Annual International Conference of the IEEE , IEEE (Montreal, Canada) , 2764-2767

Heart diseases are the leading cause of death in developed countries. Ascertaining the etiology of cardiomyopathies is still a challenge. The objective of this study was to classify cardiomyopathy patients through cardio, respiratory and vascular variability analysis, considering the vascular activity as the input and output of the baroreflex response. Forty-one cardiomyopathy patients (CMP) classified as ischemic (ICM, 24 patients) and dilated (DCM, 17 patients) were analyzed. Thirty-nine elderly control subjects (CON) were used as reference. From the electrocardiographic, respiratory flow, and blood pressure signals, following temporal series were extracted: beat-to-beat intervals (BBI), total respiratory cycle time series (TT), and end– systolic (SBP) and diastolic (DBP) blood pressure amplitudes, respectively. Three-dimensional representation of the cardiorespiratory and vascular activities was characterized geometrically, by fitting a polygon that contains 95% of data, and by statistical descriptive indices. The best classifiers were used to build support vector machine models. The optimal model to classify ICM versus DCM patients achieved 92.7% accuracy, 94.1% sensitivity, and 91.7% specificity. When comparing CMP patients and CON subjects, the best model achieved 86.2% accuracy, 82.9% sensitivity, and 89.7% specificity. These results suggest a limited ability of cardiac and respiratory systems response to regulate the vascular variability in these patients.

Keywords: Time series analysis, Support vector machines, Blood pressure, Sensitivity, Indexes, Electrocardiography, Kernel

Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2018). Onset and offset estimation of the neural inspiratory time in surface diaphragm electromyography: A pilot study in healthy subjects IEEE Journal of Biomedical and Health Informatics 22, (1), 67-76

This study evaluates the onset and offset of neural inspiratory time estimated from surface diaphragm electromyographic (EMGdi) recordings. EMGdi and airflow signals were recorded in ten healthy subjects according to two respiratory protocols based on respiratory rate (RR) increments, from 15 to 40 breaths per minute (bpm), and fractional inspiratory time (Ti/Ttot) decrements, from 0.54 to 0.18. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of neural respiratory drive (NRD). The EMGdi amplitude was estimated using the fixed sample entropy computed over a 250 ms moving window of the EMGdi signal (EMGdifse). The neural onset was detected through a dynamic threshold over the EMGdifse using the kernel density estimation method, while neural offset was detected by finding when the EMGdifse had decreased to 70 % of the peak value reached during inspiration. The Bland-Altman analysis between airflow and neural onsets showed a global bias of 46 ms in the RR protocol and 22 ms in the Ti/Ttot protocol. The Bland-Altman analysis between airflow and neural offsets reveals a global bias of 11 ms in the RR protocol and -2 ms in the Ti/Ttot protocol. The relationship between pairs of RR values (Pearson’s correlation coefficient of 0.99, Bland- Altman limits of -2.39 to 2.41 bpm, and mean bias of 0.01 bpm) and between pairs of Ti/Ttot values (Pearson’s correlation coefficient of 0.86, Bland-Altman limits of -0.11 to 0.10, and mean bias of -0.01) showed a good agreement. In conclusion, we propose a method for determining neural onset and neural offset based on non-invasive recordings of the electrical activity of the diaphragm that requires no filtering of cardiac muscle interference.

Keywords: Kernel density estimation (KDE),, Surface diaphragm electromyographic,, (EMGdi) signal,, Inspiratory time,, Neural respiratory drive (NRD),, Neural inspiratory time,, Fixed sample entropy (fSampEn)

Rodriguez, J., Voss, A., Caminal, P., Bayes-Genis, A., Giraldo, B. F., (2017). Characterization and classification of patients with different levels of cardiac death risk by using Poincaré plot analysis Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1332-1335

Cardiac death risk is still a big problem by an important part of the population, especially in elderly patients. In this study, we propose to characterize and analyze the cardiovascular and cardiorespiratory systems using the Poincaré plot. A total of 46 cardiomyopathy patients and 36 healthy subjets were analyzed. Left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF > 35%, 16 patients), and high risk (HR: LVEF ≤ 35%, 30 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, blood pressure and respiratory flow signals, respectively. Parameters that describe the scatterplott of Poincaré method, related to short- and long-term variabilities, acceleration and deceleration of the dynamic system, and the complex correlation index were extracted. The linear discriminant analysis (LDA) and the support vector machines (SVM) classification methods were used to analyze the results of the extracted parameters. The results showed that cardiac parameters were the best to discriminate between HR and LR groups, especially the complex correlation index (p = 0.009). Analising the interaction, the best result was obtained with the relation between the difference of the standard deviation of the cardiac and respiratory system (p = 0.003). When comparing HR vs LR groups, the best classification was obtained applying SVM method, using an ANOVA kernel, with an accuracy of 98.12%. An accuracy of 97.01% was obtained by comparing patients versus healthy, with a SVM classifier and Laplacian kernel. The morphology of Poincaré plot introduces parameters that allow the characterization of the cardiorespiratory system dynamics.

Keywords: Time series analysis, Electrocardiography, Support vector machines, Kernel, Standards, Correlation, RF signals

Estrada, L., Torres, A., Garcia-Casado, J., Sarlabous, L., Prats-Boluda, G., Jané, R., (2016). Time-frequency representations of the sternocleidomastoid muscle electromyographic signal recorded with concentric ring electrodes Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 3785-3788

The use of non-invasive methods for the study of respiratory muscle signals can provide clinical information for the evaluation of the respiratory muscle function. The aim of this study was to evaluate time-frequency characteristics of the electrical activity of the sternocleidomastoid muscle recorded superficially by means of concentric ring electrodes (CREs) in a bipolar configuration. The CREs enhance the spatial resolution, attenuate interferences, as the cardiac activity, and also simplify the orientation problem associated to the electrode location. Five healthy subjects underwent a respiratory load test in which an inspiratory load was imposed during the inspiratory phase. During the test, the electromyographic signal of the sternocleidomastoid muscle (EMGsc) and the inspiratory mouth pressure (Pmouth) were acquired. Time-frequency characteristics of the EMGsc signal were analyzed by means of eight time-frequency representations (TFRs): the spectrogram (SPEC), the Morlet scalogram (SCAL), the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CHWD), two generalized exponential distributions (GED1 and GED2), the Born-Jordan distribution (BJD) and the Cone-Kernel distribution (CKD). The instantaneous central frequency of the EMGsc showed an increasing behavior during the inspiratory cycle and with the increase of the inspiratory load. The bilinear TFRs (WVD, CHWD, GEDs and BJD) were less sensitive to cardiac activity interference than classical TFRs (SPEC and SCAL). The GED2 was the TFR that shown the best results for the characterization of the instantaneous central frequency of the EMGsc.

Keywords: Electrodes, Interference, Kernel, Mouth, Muscles, Spectrogram, Time-frequency analysis

Giraldo, B. F., Rodriguez, J., Caminal, P., Bayes-Genis, A., Voss, A., (2015). Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 306-309

Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyophaty patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyophaties were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopaties, obtaining an accuracy of 85.7%.

Keywords: Blood pressure, Electrocardiography, Joints, Kernel, Principal component analysis, Support vector machines, Time series analysis

Solà, J., Fiz, J. A., Morera, J., Jané, R., (2012). Multiclass classification of subjects with sleep apnoea-hypopnoea syndrome through snoring analysis Medical Engineering and Physics , 34, (9), 1213-1220

The gold standard for diagnosing sleep apnoea-hypopnoea syndrome (SAHS) is polysomnography (PSG), an expensive, labour-intensive and time-consuming procedure. Accordingly, it would be very useful to have a screening method to allow early assessment of the severity of a subject, prior to his/her referral for PSG. Several differences have been reported between simple snorers and SAHS patients in the acoustic characteristics of snoring and its variability. In this paper, snores are fully characterised in the time domain, by their sound intensity and pitch, and in the frequency domain, by their formant frequencies and several shape and energy ratio measurements. We show that accurate multiclass classification of snoring subjects, with three levels of SAHS, can be achieved on the basis of acoustic analysis of snoring alone, without any requiring information on the duration or the number of apnoeas. Several classification methods are examined. The best of the approaches assessed is a Bayes model using a kernel density estimation method, although good results can also be obtained by a suitable combination of two binary logistic regression models. Multiclass snore-based classification allows early stratification of subjects according to their severity. This could be the basis of a single channel, snore-based screening procedure for SAHS.

Keywords: Bayes classifier, Kernel density estimation, Sleep apnoea, Snoring