by Keyword: Laser

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

de Goede, Michiel, Chang, Lantian, Mu, Jinfeng, Dijkstra, Meindert, Obregón, Raquel, Martínez, Elena, Padilla, Laura, Mitjans, Francesc, Garcia-Blanco, Sonia M., (2019). Al2O3:Yb3+ integrated microdisk laser label-free biosensor Optics Letters 44, (24), 5937-5940

Whispering gallery mode resonator lasers hold the promise of an ultralow intrinsic limit of detection. However, the widespread use of these devices for biosensing applications has been hindered by the complexity and lack of robustness of the proposed configurations. In this work, we demonstrate biosensing with an integrated microdisk laser. Al2O3doped with Yb3+ was utilized because of its low optical losses as well as its emission in the range 1020–1050 nm, outside the absorption band of water. Single-mode laser emission was obtained at a wavelength of 1024 nm with a linewidth of 250 kHz while the microdisk cavity was submerged in water. A limit of detection of 300 pM (3.6 ng/ml) of the protein rhS100A4 in urine was experimentally demonstrated, showing the potential of the proposed devices for biosensing.

Keywords: Distributed feedback lasers, Fiber lasers, Laser modes, Microdisk lasers, Single mode lasers, Tunable lasers

de Goede, M., Dijkstra, M., Obregón, R., Ramón-Azcón, J., Martínez, Elena, Padilla, L., Mitjans, F., Garcia-Blanco, S. M., (2019). Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine Optics Express 27, (13), 18508-18521

Concentrations down to 3 nM of the rhS100A4 protein, associated with human tumor development, have been detected in undiluted urine using an integrated sensor based on microring resonators in the emerging Al2O3 photonic platform. The fabricated microrings were designed for operation in the C-band (λ = 1565 nm) and exhibited a high-quality factor in air of 3.2 × 105. The bulk refractive index sensitivity of the devices was ~100 nm/RIU (for TM polarization) with a limit of detection of ~10−6 RIU. A surface functionalization protocol was developed to allow for the selective binding of the monoclonal antibodies designed to capture the target biomarker to the surface of the Al2O3 microrings. The detection of rhS100A4 proteins at clinically relevant concentrations in urine is a big milestone towards the use of biosensors for the screening and early diagnosis of different cancers. Biosensors based on this microring technology can lead to portable, multiplexed and easy-to-use point of care devices.

Keywords: Distributed feedback lasers, Effective refractive index, Laser coupling, Polarization maintaining fibers, Refractive index, Scanning electron microscopy

Silva, N., Riveros, A., Yutronic, N., Lang, E., Chornik, B., Guerrero, S., Samitier, J., Jara, P., Kogan, M. J., (2018). Photothermally controlled methotrexate release system using β-cyclodextrin and gold nanoparticles Nanomaterials 8, (12), 985

The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities. Finally, cell viability was evaluated using MTS assays for β-CD/MTX and AuNPs + β-CD/MTX samples, with and without irradiation, against HeLa tumor cells. The irradiated sample of the ternary system AuNPs + β-CD/MTX produced a diminution in cell viability attributed to the photothermal release of MTX.

Keywords: Cyclodextrin, Delivery system, Gold nanoparticles, Inclusion compound, Irradiation, Laser, Methotrexate, Photothermal release

Schieber, R., Lasserre, F., Hans, M., Fernández-Yagüe, M., Díaz-Ricart, M., Escolar, G., Ginebra, M. P., Mücklich, F., Pegueroles, M., (2017). Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications Advanced Healthcare Materials 6, (19), 1700327

The main drawbacks of cardiovascular bare-metal stents (BMS) are in-stent restenosis and stent thrombosis as a result of an incomplete endothelialization after stent implantation. Nano- and microscale modification of implant surfaces is a strategy to recover the functionality of the artery by stimulating and guiding molecular and biological processes at the implant/tissue interface. In this study, cobalt-chromium (CoCr) alloy surfaces are modified via direct laser interference patterning (DLIP) in order to create linear patterning onto CoCr surfaces with different periodicities (≈3, 10, 20, and 32 μm) and depths (≈20 and 800 nm). Changes in surface topography, chemistry, and wettability are thoroughly characterized before and after modification. Human umbilical vein endothelial cells' adhesion and spreading are similar for all patterned and plain CoCr surfaces. Moreover, high-depth series induce cell elongation, alignment, and migration along the patterned lines. Platelet adhesion and aggregation decrease in all patterned surfaces compared to CoCr control, which is associated with changes in wettability and oxide layer characteristics. Cellular studies provide evidence of the potential of DLIP topographies to foster endothelialization without enhancement of platelet adhesion, which will be of high importance when designing new BMS in the future.

Keywords: CoCr, Direct laser interference patterning, Endothelial cells, Linear surface pattern, Platelets

Martínez, Dani, Pallejà, T., Moreno, Javier, Tresanchez, Marcel, Teixidó, M., Font, Davinia, Pardo, Antonio, Marco, Santiago, Palacín, Jordi, (2014). A mobile robot agent for gas leak source detection Advances in Intelligent Systems and Computing Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection (ed. Bajo Perez, Javier, Corchado Rodríguez, Juan M., Mathieu, Philippe, Campbell, Andrew, Ortega, Alfonso, Adam, Emmanuel, Navarro, Elena M., Ahrndt, Sebastian, Moreno, Maríaa N., Julián, Vicente), Springer International Publishing 293, 19-25

This paper presents an autonomous agent for gas leak source detection. The main objective of the robot is to estimate the localization of the gas leak source in an indoor environment without any human intervention. The agent implements an SLAM procedure to scan and map the indoor area. The mobile robot samples gas concentrations with a gas and a wind sensor in order to estimate the source of the gas leak. The mobile robot agent will use the information obtained from the onboard sensors in order to define an efficient scanning path. This paper describes the measurement results obtained in a long corridor with a gas leak source placed close to a wall.

Keywords: Gas detection, Mobile robot agent, Laser sensor, Self-localization

Hernandez Bennetts, V. M., Lilienthal, A. J., Khaliq, A. A., Pomareda Sese, V., Trincavelli, M., (2013). Towards real-world gas distribution mapping and leak localization using a mobile robot with 3d and remote gas sensing capabilities 2013 IEEE International Conference on Robotics and Automation (ICRA) (ed. Parker, Lynne E.), IEEE (Karlsruhe, Germany) , 2335-2340

Due to its environmental, economical and safety implications, methane leak detection is a crucial task to address in the biogas production industry. In this paper, we introduce Gasbot, a robotic platform that aims to automatize methane emission monitoring in landfills and biogas production sites. The distinctive characteristic of the Gasbot platform is the use of a Tunable Laser Absorption Spectroscopy (TDLAS) sensor. This sensor provides integral concentration measurements over the path of the laser beam. Existing gas distribution mapping algorithms can only handle local measurements obtained from traditional in-situ chemical sensors. In this paper we also describe an algorithm to generate 3D methane concentration maps from integral concentration and depth measurements. The Gasbot platform has been tested in two different scenarios: an underground corridor, where a pipeline leak was simulated and in a decommissioned landfill site, where an artificial methane emission source was introduced.

Keywords: Laser beams, Measurement by laser beam, Mobile robots, Robot kinematics, Robot sensing systems

Manara, S., Paolucci, F., Palazzo, B., Marcaccio, M., Foresti, E., Tosi, G., Sabbatini, S., Sabatino, P., Altankov, G., Roveri, N., (2008). Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate Inorganica Chimica Acta 361, (6), 1634-1645

A biomimetic bone-like composite, made of self-assembled collagen fibrils and carbonate hydroxyapatite nanocrystals, has been performed by an electrochemically-assisted deposition on titanium plate. The electrolytic processes have been carried out using a single type I collagen molecules suspension in a diluted Ca(NO3)(2) and NH4H2PO4 solution at room temperature and applying a constant current for different periods of time. Using the same electrochemical conditions, carbonate hydroxyapatite nanocrystals or reconstituted collagen. brils coatings were obtained. The reconstituted collagen. brils, hydroxyapatite nanocrystals and collagen fibrils/apatite nanocrystals coatings have been characterized chemically, structurally and morphologically, as well as for their ability to bind fibronectin (FN). Fourier Transform Infrared microscopy has been used to map the topographic distribution of the coating components at different times of electrochemical deposition, allowing to single out the individual deposition steps. Moreover, roughness of Ti plate has been found to affect appreciably the nucleation region of the inorganic nanocrystals. Laser scanning confocal microscopy has been used to characterize the FN adsorption pattern on a synthetic biomimetic apatitic phase, which exhibits a higher affinity when it is inter-grown with the collagen fibrils. The results offer auspicious applications in the preparation of medical devices such as biomimetic bone-like composite-coated metallic implants.

Keywords: Hydroxyapatite-collagen coating, Electrochemically-assisted deposition, Micro-imaging FTIR spectroscopy, Laser scanning confocal microscopy, Biomimetic crystal growth, Fibronectin binding