by Keyword: MCR-ALS

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Montoliu, I., Tauler, R., Padilla, M., Pardo, A., Marco, S., (2010). Multivariate curve resolution applied to temperature modulated metal oxide gas sensors Sensors and Actuators B: Chemical , 145, (1), 464-473

Metal oxide (MOX) gas sensors have been widely used for years. Temperature modulation of gas sensors is as an alternative to increase their sensitivity and selectivity to different gas species. In order to enhance the extraction of useful information from this kind of signals, data processing techniques are needed. In this work, the use of self-modelling curve resolution techniques, in particular multivariate curve resolution-alternating least squares (MCR-ALS), is presented for the analysis of these signals. First, the performance of MCR in a synthetic dataset generated from temperature-modulated gas sensor response models has been evaluated, showing good results both in the resolution of gas mixtures and in the determination of concentration/sensitivity profiles. Secondly, experimental confirmation of previously obtained conclusions is attempted using temperature-modulated MOX sensors together with MCR-ALS for the analysis of carbon monoxide (CO) and methane (CH4) gas mixtures in dry air. Results allow confirming the possibility of using the proposed approach as a quantitative technique for gas mixtures analysis, and also reveal some limitations.

Keywords: Temperature modulation, Multivariate curve resolution, MCR-ALS, Metal oxide sensors

Montoliu, I., Pomareda, V., Kalms, A., Pardo, A., Gobel, J., Kessler, M., Muller, G., Marco, S., (2009). Resolution of ion mobility spectra for the detection of hazardous substances in real sampling conditions Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 576-578

This work presents the possibilities offered by a blind source separation method such Multivariate Curve Resolution- Alternating Least Squares (MCR-ALS) in the analysis of Ion Mobility Spectra (IMS). Two security applications are analyzed in this context: the detection of TNT both in synthetic and real samples. Results obtained show the possibilities offered by the direct analysis of the drift time spectra when an appropriate resolution method is used.

Keywords: Ion Mobility Spectrometry, Multivariate Curve Resolution, Security, LIMS, MCR-ALS