Publications

by Keyword: Machine olfaction


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Solórzano, A., Rodríguez-Pérez, R., Padilla, M., Graunke, T., Fernandez, L., Marco, S., Fonollosa, J., (2018). Multi-unit calibration rejects inherent device variability of chemical sensor arrays Sensors and Actuators B: Chemical 265, 142-154

Inherent sensor variability limits mass-production applications for metal oxide (MOX) gas sensor arrays because calibration for replicas of a sensor array needs to be performed individually. Recently, calibration transfer strategies have been proposed to alleviate calibration costs of new replicas, but they still require the acquisition of transfer samples. In this work, we present calibration models that can be extended to uncalibrated replicas of sensor arrays without acquiring new samples, i.e., general or global calibration models. The developed methodology consists in including multiple replicas of a sensor array in the calibration process such that sensor variability is rejected by the general model. Our approach was tested using replicas of a MOX sensor array in the classification task of six gases and synthetic air, presented at different background humidity and concentration levels. Results showed that direct transfer of individual calibration models provides poor classification accuracy. However, we also found that general calibration models kept predictive performance when were applied directly to new copies of the sensor array. Moreover, we explored, through feature selection, whether particular combinations of sensors and operating temperatures can provide predictive performances equivalent to the calibration model with the complete array, favoring thereby the existence of more robust calibration models.

Keywords: Gas sensor array, MOX sensor, Robust calibration, Calibration transfer, Machine olfaction


Fernandez, L., Yan, J., Fonollosa, J., Burgués, J., Gutierrez, A., Marco, S., (2018). A practical method to estimate the resolving power of a chemical sensor array: Application to feature selection Frontiers in Chemistry 6, Article 209

A methodology to calculate analytical figures of merit is not well established for detection systems that are based on sensor arrays with low sensor selectivity. In this work, we present a practical approach to estimate the Resolving Power of a sensory system, considering non-linear sensors and heteroscedastic sensor noise. We use the definition introduced by Shannon in the field of communication theory to quantify the number of symbols in a noisy environment, and its version adapted by Gardner and Barlett for chemical sensor systems. Our method combines dimensionality reduction and the use of algorithms to compute the convex hull of the empirical data to estimate the data volume in the sensor response space. We validate our methodology with synthetic data and with actual data captured with temperature-modulated MOX gas sensors. Unlike other methodologies, our method does not require the intrinsic dimensionality of the sensor response to be smaller than the dimensionality of the input space. Moreover, our method circumvents the problem to obtain the sensitivity matrix, which usually is not known. Hence, our method is able to successfully compute the Resolving Power of actual chemical sensor arrays. We provide a relevant figure of merit, and a methodology to calculate it, that was missing in the literature to benchmark broad-response gas sensor arrays.

Keywords: Gas sensor array, MOX sensors, Resolving Power, Sensor resolution, Dimensionality reduction, Machine olfaction


Pomareda, V., Magrans, R., Jiménez-Soto, J., Martínez, D., Tresánchez, M., Burgués, J., Palacín, J., Marco, S., (2017). Chemical source localization fusing concentration information in the presence of chemical background noise Sensors 17, (4), 904

We present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented.

Keywords: Machine olfaction, Odor robots, Chemical sensors, Bayesian inference


Solorzano, A., Fonollosa, J., Fernandez, L., Eichmann, J., Marco, S., (2017). Fire detection using a gas sensor array with sensor fusion algorithms IEEE Conference Publications ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) , IEEE (Montreal, Canada) , 1-3

Conventional fire alarms are based on smoke detection. Nevertheless, in some fire scenarios volatiles are released before smoke. Fire detectors based only on chemical sensors have already been proposed as they may provide faster response, but they are still prone to false alarms in the presence of nuisances. These systems rely heavily on pattern recognition techniques to discriminate fires from nuisances. In this context, it is important to test the systems according to international standards for fires and testing the system against a diversity of nuisances. In this work, we investigate the behavior of a gas sensor array coupled to sensor fusion algorithms for fire detection when exposed to standardized fires and several nuisances. Results confirmed the ability to detect fires (97% Sensitivity), although the system still produces a significant rate of false alarms (35%) for nuisances not presented in the training set.

Keywords: Fire alarm, Gas sensor array, Machine Olfaction, Multisensor system, Sensor fusion


Fonollosa, J., Neftci, E., Huerta, R., Marco, S., (2015). Evaluation of calibration transfer strategies between Metal Oxide gas sensor arrays Procedia Engineering EUROSENSORS 2015 , Elsevier (Freiburg, Germany) 120, 261-264

Abstract Inherent variability of chemical sensors makes necessary individual calibration of chemical detection systems. This shortcoming has traditionally limited usability of systems based on Metal Oxide (MOX) sensor arrays and prevented mass-production for some applications. Here, aiming at exploring transfer calibration between electronic nose systems, we exposed five identical 8-sensor detection units to controlled gas conditions. Our results show that a calibration model provides more accurate predictions when the tested board is included in the calibration dataset. However, we show that previously built calibration models can be extended to other units using a reduced number of measurements. While baseline correction seems imperative for successful baseline correction, among the different tested strategies, piecewise direct standardization provides more accurate predictions.

Keywords: Electronic nose, Calibration, MOX sensor, Machine Olfaction