Publications

by Keyword: Matrix


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Magdaleno, Fernando, Schierwagen, R., Uschner, Frank E., Trebicka, J., (2018). “Tipping” extracellular matrix remodeling towards regression of liver fibrosis: novel concepts Minerva Gastroenterologica e Dietologica , 64, (1), 51-61

Fibrosis development was initially conceived as an incessant progressive condition. Nowadays, it has become evident that fibrotic tissue undergoes a continuous two-way process: fibrogenesis and fibrinolysis, characterizing the remodeling of extracellular matrix (ECM). However, in established fibrosis, this two-way process is tipped towards fibrogenesis and this leads to a self-perpetuating accumulation of ECM, a distinct metabolic unit, together with other cells and processes promoting fibrosis deposition. Several mechanisms promote fibrosis regression, such as degradation of ECM, infiltration of restorative macrophages, prevention of the epithelial-mesenchymal transition of hepatocytes, restoration of the liver sinusoidal endothelial cells’ differentiation phenotype, and reversion to quiescence, apoptosis and senescence of hepatic stellate cells (HSC). Hence, fibrosis is the result of an unbalanced two-way process of matrix remodeling. At the late stage of the disease, antifibrotic interventions could become necessary to reverse self-perpetuating fibrogenesis and accelerate regression of fibrosis even if cause and cofactors of hepatic injury have been eliminated. This review outlines some of the important mechanisms leading towards regression of liver fibrosis.

Keywords: Hepatic stellate cells, Extracellular matrix, remodeling, Rho-associated kinases, Janus kinases


Bennett, Mark, Cantini, Marco, Reboud, Julien, Cooper, Jonathan M., Roca-Cusachs, Pere, Salmeron-Sanchez, Manuel, (2018). Molecular clutch drives cell response to surface viscosity Proceedings of the National Academy of Sciences of the United States of America 115, (6), 1192-1197

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.

Keywords: Matrix rigidity, Molecular clutch, Surface viscosity, Mechanotransduction, Cell differentiation


Alcaraz, J., Otero, J., Jorba, I., Navajas, D., (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy Seminars in Cell and Developmental Biology , 73, 71-81

There is growing recognition that the mechanical interactions between cells and their local extracellular matrix (ECM) are central regulators of tissue development, homeostasis, repair and disease progression. The unique ability of atomic force microscopy (AFM) to probe quantitatively mechanical properties and forces at the nanometer or micrometer scales in all kinds of biological samples has been instrumental in the recent advances in cell and tissue mechanics. In this review we illustrate how AFM has provided important insights on our current understanding of the mechanobiology of cells, ECM and cell-ECM bidirectional interactions, particularly in the context of soft acinar tissues like the mammary gland or pulmonary tissue. AFM measurements have revealed that intrinsic cell micromechanics is cell-type specific, and have underscored the prominent role of β1 integrin/FAK(Y397) signaling and the actomyosin cytoskeleton in the mechanoresponses of both parenchymal and stromal cells. Moreover AFM has unveiled that the micromechanics of the ECM obtained by tissue decellularization is unique for each anatomical compartment, which may support both its specific function and cell differentiation. AFM has also enabled identifying critical mechanoregulatory proteins involved in branching morphogenesis (MMP14) and acinar differentiation (α3β1 integrin), and has clarified the role of altered tissue mechanics and architecture in a variety of pathologic conditions. Critical technical issues of AFM mechanical measurements like tip geometry effects are also discussed.

Keywords: Atomic force microscopy, Beta1 integrin, Elastic modulus, Extracellular matrix, Morphogenesis, Tissue decellularization


Caballero, D., Samitier, J., (2017). Topological control of extracellular matrix growth: A native-like model for cell morphodynamics studies ACS Applied Materials & Interfaces , 9, (4), 4159-4170

The interaction of cells with their natural environment influences a large variety of cellular phenomena, including cell adhesion, proliferation, and migration. The complex extracellular matrix network has challenged the attempts to replicate in vitro the heterogeneity of the cell environment and has threatened, in general, the relevance of in vitro studies. In this work, we describe a new and extremely versatile approach to generate native-like extracellular matrices with controlled morphologies for the in vitro study of cellular processes. This general approach combines the confluent culture of fibroblasts with microfabricated guiding templates to direct the three-dimensional growth of well-defined extracellular networks which recapitulate the structural and biomolecular complexity of features typically found in vivo. To evaluate its performance, we studied fundamental cellular processes, including cell cytoskeleton organization, cell-matrix adhesion, proliferation, and protrusions morphodynamics. In all cases, we found striking differences depending on matrix architecture and, in particular, when compared to standard two-dimensional environments. We also assessed whether the engineered matrix networks influenced cell migration dynamics and locomotion strategy, finding enhanced migration efficiency for cells seeded on aligned matrices. Altogether, our methodology paves the way to the development of high-performance models of the extracellular matrix for potential applications in tissue engineering, diagnosis, or stem-cell biology.

Keywords: Biomimetics, Cell migration, Engineered cell-derived matrices, Extracellular matrix, In vitro model


Bianchi, M. V., Awaja, F., Altankov, G., (2017). Dynamic adhesive environment alters the differentiation potential of young and ageing mesenchymal stem cells Materials Science and Engineering: C 78, 467-474

Engineering dynamic stem cell niche-like environment offers opportunity to obtain better control of the fate of stem cells. We identified, for the first time, that periodic changes in the adhesive environment of human adipose derived mesenchymal stem cells (ADSCs) alters dramatically their asymmetric division but not their ability for symmetric renewal. Hereby, we used smart thermo-responsive polymer (PNIPAM) to create a dynamic adhesive environment for ADSCs by applying periodic temperature cycles to perturb adsorbed adhesive proteins to substratum interaction. Cumulative population doubling time (CPDT) curves showed insignificant decline in the symmetric cell growth studied for up to 13th passages accompanied with small changes in the overall cell morphology and moderately declined fibronectin (FN) matrix deposition probably as a functional consequence of ADSCs ageing. However, a substantial alteration in the differentiation potential of ADSCs from both early and late passages (3rd and 14th, respectively) was found when the cells were switched to osteogenic differentiation conditions. This behavior was evidenced by the significantly altered alkaline phosphatase activity and Ca deposition (Alizarin red) assayed at 3, 14 and 21 day in comparison to the control samples of regular TC polystyrene processed under same temperature settings.

Keywords: Cell ageing, Dynamic adhesive environment, Extracellular matrix, Mesenchymal stem cells, PNIPAM, Stem cell niche, Symmetric and asymmetric cell growth, Thermo-cycling, Thermo-responsive polymer


Li, Haiyue, Xu, Bin, Zhou, Enhua H., Sunyer, Raimon, Zhang, Yanhang, (2017). Multiscale measurements of the mechanical properties of collagen matrix ACS Biomaterials Science & Engineering , 3, (11), 2815-2824

The underlying mechanisms by which extracellular matrix (ECM) mechanics influences cell and tissue function remain to be elucidated because the events associated with this process span size scales from tissue to molecular level. Furthermore, ECM has an extremely complex hierarchical 3D structure and the load distribution is highly dependent on the architecture and mechanical properties of ECM. In the present study, the macro- and microscale mechanical properties of collagen gel were studied. Dynamic rheological testing was performed to study the macroscale mechanical properties of collagen gel. The microscale mechanical properties of collagen gel were measured using optical magnetic twisting cytometry (OMTC). Ferromagnetic beads embedded in the matrix were used as mechanical probes. Our study on the multiscale mechanical properties of collage matrix suggests several interesting differences between macro and microscale mechanical properties originated from the scales of measurements. At the macroscopic scale, storage and loss modulus increase with collagen concentrations. Nonaffine collagen fibril structural network deformation plays an important role in determining the macroscopic mechanical properties of the collagen matrix. At the microscopic scale, however, the local mechanical properties are less sensitive to changes in collagen concentration because of the more immediate/direct deformation of collagen fibrils in the OMTC measurements through forces exerted by locally attached ferromagnetic beads. The loss modulus is more affected by the local interstitial fluid environment, leading to a rather dramatic increase in viscosity with frequency, especially at higher frequencies (>10 Hz). A finite element model was developed to study the geometric factors in the OMTC measurements when the collagen matrix was considered to be hyperelastic. Our results show that the geometric factors are dependent on collagen concentration, or the stiffness of matrix, when nonlinear material properties of the matrix are considered, and thus interpretation of the apparent modulus from OMTC measurements should be conducted carefully.

Keywords: Keywords: collagen, Extracellular matrix, Geometric factor, Nonaffine deformation, Optical magnetic twisting cytometry


Giménez, A., Uriarte, J. J., Vieyra, J., Navajas, D., Alcaraz, J., (2017). Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy Microscopy Research and Technique , 80, (1), 85-96

The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell-extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM-coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state-of-the-art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions.

Keywords: 3D culture, Atomic force microscopy, Elastic modulus, Extracellular matrix, Polyacrylamide


Garreta, E., de Oñate, L., Fernández-Santos, M. E., Oria, R., Tarantino, C., Climent, A. M., Marco, A., Samitier, M., Martínez, Elena, Valls-Margarit, M., Matesanz, R., Taylor, D. A., Fernández-Avilés, F., Izpisua Belmonte, J. C., Montserrat, N., (2016). Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts Biomaterials , 98, 64-78

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

Keywords: Cardiac function, Extracellular matrix, Gene targeting, Pluripotent stem cells


Levato, R., Planell, J. A., Mateos-Timoneda, M. A., Engel, E., (2015). Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy Acta Biomaterialia 18, 59-67

Many cell therapies rely on the ability of mesenchymal stromal cells (MSCs) to diffuse and localize throughout the target tissue-such as tumoral and ischemic tissues-, in response to specific cytokine signals, rather than being concentrated at the site of implantation. Therefore, it is fundamental to engineer biomaterial carriers as reservoirs, from which cells can migrate, possibly in a controlled manner. In this work, microcarriers (μCs) made of polylactic acid are characterized as MSC delivery vehicles capable of modulating key chemotactic pathways. The effect of different functionalization strategies on MSC migratory behavior from the μCs is studied in vitro in relation to SDF-1α/CXCR4 axis,-a major actor in MSC recruitment, chemotaxis and homing. Collagen and arginine-glycine-aspartic acid (RGD) peptides were either covalently grafted or physisorbed on μC surface. While stable covalent modifications promoted better cell adhesion and higher proliferation compared to physisorption, the functionalization method of the μCs also affected the cells migratory behavior in response to SDF-1α (CXCL12) stimulation. Less stable coatings (physisorbed) showed sensibly higher number of migrating cells than covalent collagen/RGD coatings. The combination of physic-chemical cues provided by protein/peptide functionalization and stimuli induced by 3D culture on μCs improved MSC expression of CXCR4, and exerted a control over cell migration, a condition suitable to promote cell homing after transplantation in vivo. These are key findings to highlight the impact of surface modification approaches on chemokine-triggered cell release, and allow designing biomaterials for efficient and controlled cell delivery to damaged tissues.

Keywords: Cell therapy, Chemotaxis, ECM (extracellular matrix), Mesenchymal stromal cells, Surface modification


Crosas-Molist, E., Meirelles, T., López-Luque, J., Serra-Peinado, C., Selva, J., Caja, L., Gorbenko Del Blanco, D., Uriarte, J. J., Bertran, E., Mendizábal, Y., Hernández, V., García-Calero, C., Busnadiego, O., Condom, E., Toral, D., Castellà, M., Forteza, A., Navajas, D., Sarri, E., Rodríguez-Pascual, F., Dietz, H. C., Fabregat, I., Egea, G., (2015). Vascular smooth muscle cell phenotypic changes in patients with marfan syndrome Arteriosclerosis, Thrombosis, and Vascular Biology , 35, (4), 960-972

Objective - Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Approach and Results - Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. Conclusions - In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation.

Keywords: Actin, Aortic aneurysms, Aortic stiffness, Extracellular matrix, Focal adhesion, Myocardin, RhoA, TGF-β


Perea-Gil, I., Uriarte, J. J., Prat-Vidal, C., Gálvez-Montón, C., Roura, S., Llucià-Valldeperas, A., Soler-Botija, C., Farré, R., Navajas, D., Bayes-Genis, A., (2015). In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization American Journal of Translational Research , 7, (3), 558-573

Introduction. Selection of a biomaterial-based scaffold that mimics native myocardial extracellular matrix (ECM) architecture can facilitate functional cell attachment and differentiation. Although decellularized myocardial ECM accomplishes these premises, decellularization processes may variably distort or degrade ECM structure. Materials and methods. Two decellularization protocols (DP) were tested on porcine heart samples (epicardium, mid myocardium and endocardium). One protocol, DP1, was detergent-based (SDS and Triton X-100), followed by DNase I treatment. The other protocol, DP2, was focused in trypsin and acid with Triton X-100 treatments. Decellularized myocardial scaffolds were reseeded by embedding them in RAD16-I peptidic hydrogel with adipose tissue-derived progenitor cells (ATDPCs). Results. Both protocols yielded acellular myocardial scaffolds (~82% and ~94% DNA reduction for DP1 and DP2, respectively). Ultramicroscopic assessment of scaffolds was similar for both protocols and showed filamentous ECM with preserved fiber disposition and structure. DP1 resulted in more biodegradable scaffolds (P = 0.04). Atomic force microscopy revealed no substantial ECM stiffness changes post-decellularization compared to native tissue. The Young’s modulus did not differ between heart layers (P = 0.69) or decellularization protocols (P = 0.15). After one week, recellularized DP1 scaffolds contained higher cell density (236 ± 106 and 98 ± 56 cells/mm2 for recellularized DP1 and DP2 scaffolds, respectively; P = 0.04). ATDPCs in both DP1 and DP2 scaffolds expressed the endothelial marker isolectin B4, but only in the DP1 scaffold ATDPCs expressed the cardiac markers GATA4, connexin43 and cardiac troponin T. Conclusions. In our hands, DP1 produced myocardial scaffolds with higher cell repopulation and promotes ATDPCs expression of endothelial and cardiomyogenic markers.

Keywords: Acellular myocardial scaffold, Adipose tissue-derived progenitor cells, Decellularization protocols, Extracellular matrix, Myocardial infarction, Recellularization


Andreu, I., Luque, T., Sancho, A., Pelacho, B., Iglesias-García, O., Melo, E., Farré, R., Prósper, F., Elizalde, M. R., Navajas, D., (2014). Heterogeneous micromechanical properties of the extracellular matrix in healthy and infarcted hearts Acta Biomaterialia 10, (7), 3235-3242

Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n = 8) and infarcted mice (n = 8) were decellularized with sodium dodecyl sulfate and cut into 12 μm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 ± 2.8 to 74.5 ± 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.

Keywords: Atomic force microscopy, Extracellular matrix, Heart scaffold, Nanoindentation, Viscoelasticity


Melo, E., Cárdenes, N., Garreta, E., Luque, T., Rojas, M., Navajas, D., Farré, R., (2014). Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs Journal of the Mechanical Behavior of Biomedical Materials , 37, 186-195

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1. kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7. kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6. kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8. kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.

Keywords: Ageing, Atomic force microscopy, Decellularization, Lung fibrosis, Tissue engineering, Atomic force microscopy, Biological organs, Peptides, Sodium dodecyl sulfate, Sodium sulfate, Tissue engineering, Ageing, Decellularization, Extracellular matrices, Healthy controls, Inhomogeneities, Lung fibrosis, Micro-mechanical, Statistically significant difference, Mammals, bleomycin, adventitia, animal experiment, animal model, article, atomic force microscopy, bleomycin-induced pulmonary fibrosis, cell fate, controlled study, extracellular matrix, female, intima, lung alveolus, lung fibrosis, lung mechanics, mechanical probe, microenvironment, mouse, nonhuman, pleura, priority journal, rigidity, tissue engineering


Nonaka, P. N., Uriarte, J. J., Campillo, N., Melo, E., Navajas, D., Farré, R., Oliveira, L. V. F., (2014). Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate Respiratory Physiology & Neurobiology , 200, 1-5

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (RL) and elastance (EL) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

Keywords: Lung bioengineering, Lung decellularization, Organ scaffold, dodecyl sulfate sodium, animal tissue, article, artificial ventilation, compliance (physical), controlled study, enzyme chemistry, extracellular matrix, female, flow, lung, lung decellularization, lung pressure, lung resistance, mouse, nonhuman, positive end expiratory pressure, priority journal, rigidity, tissue engineering, trachea pressure


Pérez-Amodio, Soledad, Engel, Elisabeth, (2014). Bone biology and Regeneration Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 315-342

Each bone of the skeleton constantly undergoes modeling during life to help it to adapt to changing biomechanical forces as well as remodeling to remove old bone and replace it with new, mechanically stronger bone to help preserve bone strength. Bone remodeling involves the removal of mineralized bone by osteoclasts, followed by the formation of bone matrix through the osteoblasts that subsequently become mineralized. All these assets make bone a suitable model for regeneration. Bone tissue can be grossly divided into inorganic mineral material (mostly HA), and organic material from cells and the extracellular matrix. This chapter outlines some of the bone diseases such as osteoporosis and Paget's disease. Bone can be considered as a biphasic composite material, with two phases: one the mineral and the other collagen. This combination confers better mechanical properties on the tissue than each component itself.

Keywords: Bone biology, Bone cells, Bone diseases, Bone extracellular matrix, Bone mechanics, Bone remodeling, Bone tissue regeneration, Skeleton


Ginebra, M. P., Canal, C., Espanol, M., Pastorino, D., Montufar, E. B., (2012). Calcium phosphate cements as drug delivery materials Advanced Drug Delivery Reviews , 64, (12), 1090-1110

Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions.

Keywords: Antibiotic, Bioceramic, Biomaterial, Bone regeneration, Calcium phosphate cement, Ceramic matrix, Growth factor, Hydroxyapatite, Ions, Protein


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite Journal of Materials Science-Materials in Medicine , 23, (10), 2509-2520

Solution-mediated reactions due to ionic substitutions are increasingly explored as a strategy to improve the biological performance of calcium phosphate-based materials. Yet, cellular response to well-defined dynamic changes of the ionic extracellular environment has so far not been carefully studied in a biomaterials context. In this work, we present kinetic data on how osteoblast-like SAOS-2 cellular activity and calcium-deficient hydroxyapatite (CDHA) influenced extracellular pH as well as extracellular concentrations of calcium and phosphate in standard in vitro conditions. Since cells were grown on membranes permeable to ions and proteins, they could share the same aqueous environment with CDHA, but still be physically separated from the material. In such culture conditions, it was observed that gradual material-induced adsorption of calcium and phosphate from the medium had only minor influence on cellular proliferation and alkaline phosphatase activity, but that competition for calcium and phosphate between cells and the biomaterial delayed and reduced significantly the cellular capacity to deposit calcium in the extracellular matrix. The presented work thus gives insights into how and to what extent solution-mediated reactions can influence cellular response, and this will be necessary to take into account when interpreting CDHA performance both in vitro and in vivo.

Keywords: Alkaline-phosphatase activity, Saos-2 cells, In-vitro, bone mineralization, Biological basis, Differentiation, Culture, Matrix, Proliferation, Topography


Hristova, K., Pecheva, E., Pramatarova, L., Altankov, G., (2011). Improved interaction of osteoblast-like cells with apatite-nanodiamond coatings depends on fibronectin Journal of Materials Science: Materials in Medicine , 22, (8), 1891-1900

New apatite (AP)/nanodiamond (ND) coating has been developed to improve physical and biological properties of stainless steel (SS) versus single AP coating. Homogeneously electrodeposited AP-ND layer demonstrates increased mechanical strength, interlayer cohesion and ductility. In the absence of serum, osteoblast-like MG63 cells attach well but poorly spread on both AP and AP-ND substrata. Pre-adsorption with serum or fibronectin (FN) improves the cellular interaction-an effect that is better pronounced on the AP-ND coating. In single protein adsorption study fluorescein isothiocyanate-labeled FN (FITC-FN) shows enhanced deposition on the AP-ND layer consistent with the significantly improved cell adhesion, spreading and focal adhesions formation (in comparison to SS and AP), particularly at low FN adsorption concentrations (1 mu g/ml). Higher FN concentrations (20 mu g/ml) abolish this difference suggesting that the promoted cellular interaction of serum (where FN is low) is caused by the greater affinity for FN. Moreover, it is found that MG63 cells tend to rearrange both adsorbed and secreted FN on the AP-ND layer suggesting facilitated FN matrix formation.

Keywords: Extracellular-matrix, Protein adsorption, Integrins, Adhesion, Biomaterials, Surfaces, Polymerization, Composite, Implants, Titanium


Pegueroles, M., Aparicio, C., Bosio, M., Engel, E., Gil, F. J., Planell, J. A., Altankov, G., (2010). Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy Acta Biomaterialia 6, (1), 291-301

We investigated the early events of bone matrix formation, and specifically the role of fibronectin (FN) in the initial osteoblast interaction and the subsequent organization of a provisional FN matrix on different rough titanium (Ti) surfaces. Fluorescein isothiocyanate-label led FN was preadsorbed on these surfaces and studied for its three-dimensional (3-D) organization by confocal microscopy, while its amount was quantified after NaOH extraction. An irregular pattern of adsorption with a higher amount of protein on topographic peaks than on valleys was observed and attributed to the physicochemical heterogeneity of the rough Ti surfaces. MG63 osteoblast-like cells were further cultured on FN-preadsorbed Ti surfaces and an improved initial cellular interaction was observed with increasing roughness. 3-D reconstruction of the immunofluorescence images after 4 days of incubation revealed that osteoblasts deposit FN fibrils in a specific facet-like pattern that is organized within the secreted total matrix overlying the top of the samples. The thickness of this FN layer increased when the roughness of the underlying topography was increased, but not by more than half of the total maximum peak-to-valley distance, as demonstrated with images showing simultaneous reconstruction of fluorescence and topography after 7 days of cell culture.

Keywords: Fibronectin, Extracellular matrix organization, Titanium, Surface topography, Surface energy


Gugutkov, D., Altankov, G., Hernandez, J. C. R., Pradas, M. M., Sanchez, M. S., (2010). Fibronectin activity on substrates with controlled -OH density Journal of Biomedical Materials Research - Part A , 92A, (1), 322-331

Adhesion of human fibroblast to a family of fibronectin (FN) coated model substrates consisting of copolymers of ethyl acrylate and hydroxyl ethylacrylate in different ratios to obtain a controlled surface density of -OH groups was investigated. Cell adhesion and spreading surprisingly decreased as the fraction of -OH groups on the Surface increased. AFM studies of FN conformation revealed formation of a protein network on the more hydrophobic surfaces. The density of this network diminished as the fraction of -OH groups in the sample increased, up to a maximal -OH concentration at which, instead of the network, only IN aggregates were observed. The kinetics of network development was followed at different adsorption times. Immunofluorescence for vinculin revealed the formation of well-developed focal adhesion complexes on the more hydrophobic surface (similar to the control glass), which became less defined as the fraction of -OH groups increased. Thus, the efficiency of cell adhesion is enhanced by the formation of FN networks on the substrate, directly revealing the importance of the adsorbed protein conformation for cell adhesion. However, cell-dependent reorganization of substrate-associated FN, which usually takes place on more hydrophilic substrates (as do at the control glass slides), was not observed in this system, suggesting the increased strength of protein-to-substrate interaction. Instead, the late FN matrix formation-after 3 days of culture-was again better pronounced on the more hydrophobic substrates and decreased as the fraction of -OH groups increase, which is in a good agreement with the results for overall cell morphology and focal adhesion formation.

Keywords: Cell adhesion, Fibronectin, Fibroblast, Extracellular matrix, AFM


Pomareda, V., Calvo, D., Pardo, A., Marco, S., (2010). Hard modeling multivariate curve resolution using LASSO: Application to ion mobility spectra Chemometrics and Intelligent Laboratory Systems , 104, (2), 318-332

Multivariate Curve Resolution (MCR) aims to blindly recover the concentration profile and the source spectra without any prior supervised calibration step. It is well known that imposing additional constraints like positiveness, closure and others may improve the quality of the solution. When a physico-chemical model of the process is known, this can be also introduced constraining even more the solution. In this paper, we apply MCR to Ion Mobility Spectra. Since instrumental models suggest that peaks are of Gaussian shape with a width depending on the instrument resolution, we introduce that each source is characterized by a linear superposition of Gaussian peaks of fixed spread. We also prove that this model is able to fit wider peaks departing from pure Gaussian shape. Instead of introducing a non-linear Gaussian peak fitting, we use a very dense model and rely on a least square solver with L1-norm regularization to obtain a sparse solution. This is accomplished via Least Absolute Shrinkage and Selection Operator (LASSO). Results provide nicely resolved concentration profiles and spectra improving the results of the basic MCR solution.

Keywords: Blind source separation, Ion mobility spectrometry, Multivariate curve resolution, Sparse solution, Non negative matrix factorization


Jang, J. H., Castano, O., Kim, H. W., (2009). Electrospun materials as potential platforms for bone tissue engineering Advanced Drug Delivery Reviews , 61, (12), 1065-1083

Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.

Keywords: Electrospun nanofiber, Bone tissue engineering, Biomimetic matrix, Bone bioactivity, 3D scaffolding


Gugutkov, Dencho, Gonzalez-Garcia, Cristina, Rodriguez Hernandez, Jose Carlos, Altankov, George, Salmeron-Sanchez, Manuel, (2009). Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers Langmuir , 25, (18), 10893-10900

Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, allow one to rationalize the process. Further, the role of the spatial organization of the FN network on the cellular response is investigated through its adsorption on electrospun fibers. Randomly oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones.

Keywords: AFM, Cell-adhesion, Dependent conformations, Hydrophobic surfaces, Extracellular-matrix, Bound fibronectin, Polymer surfaces, Integrin binding, Biocompatibility, Adsorption


Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology , 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton


Rico, P., Rodriguez Hernandez, J. C., Moratal, D., Altankov, G., Monleon Pradas, M., Salmeron-Sanchez, M., (2009). Substrate-induced assembly of fibronectin into networks. Influence of surface chemistry and effect on osteoblast adhesion Tissue Engineering Part A , 15, (00), 1-11

The influence of surface chemistry -substrates with controlled surface density of -OH groups- on fibronectin conformation and distribution is directly observed by Atomic Force Microscopy (AFM). FN fibrillogenesis, which is known to be a process triggered by interaction with integrins, is shown in our case to be induced by the substrate (in absence of cells), which is able to enhance FN-FN interactions leading to the formation of a protein network on the material surface. This phenomenon depends both on surface chemistry and protein concentration. The level of the FN fibrillogenesis was quantified by calculating the fractal dimension of the adsorbed protein from image analysis of the AFM results. The total amount of adsorbed FN is obtained by making use of a methodology which employs western-blotting combined with image analysis of the corresponding protein bands, with the lowest sensitivity threshold equal to 15 ng of adsorbed protein. Furthermore, FN adsorption is correlated to human osteoblast adhesion through morphology and actin cytoskeleton formation. Actin polymerization is in need of the formation of the protein network on the substrate's surface. Cell morphology is more rounded (as quantified by calculating the circularity of the cells by image analysis) the lower the degree of FN fibrillogenesis on the substrate.

Keywords: Cell-adhesion, Conformational-changes, Electron-microscopy, Protein adsorption, Fractal dimension, Integrin binding, Biocompatibility, Monolayers, Matrix, Fibrillogenesis


Marco, S., Pomareda, V., Pardo, A., Kessler, M., Goebel, J., Mueller, G., (2009). Blind source separation for ion mobility spectra Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 551-553

Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications.. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modem methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

Keywords: Ion Mobility Spectrometry (IMS), Blind Source Separation (BSS), Multivariate Analysis, SIMPLISMA, MCR, Non-Negative Matrix Factorization (NMF)


Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry , 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein


Gavara, N., Roca-Cusachs, P., Sunyer, R., Farre, R., Navajas, D., (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton Biophysical Journal , 95, (1), 464-471

The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.

Keywords: Cell Line, Computer Simulation, Cytoskeleton/ physiology, Elasticity, Epithelial Cells/ physiology, Extracellular Matrix/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Stress, Mechanical


Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine , 19, (4), 1839-1850

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties