Publications

by Keyword: Mechanotransduction


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Bennett, Mark, Cantini, Marco, Reboud, Julien, Cooper, Jonathan M., Roca-Cusachs, Pere, Salmeron-Sanchez, Manuel, (2018). Molecular clutch drives cell response to surface viscosity Proceedings of the National Academy of Sciences 115, (6), 1192-1197

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.

Keywords: Matrix rigidity, Molecular clutch, Surface viscosity, Mechanotransduction, Cell differentiation


Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria, R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A. L., Shanahan, C. M., Trepat, X., Navajas, D., Garcia-Manyes, S., Roca-Cusachs, P., (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores Cell 171, (6), 1397-1410

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Force-dependent changes in nuclear pores control protein access to the nucleus.

Keywords: Atomic force microscopy, Hippo pathway, Mechanosensing, Mechanotransduction, Molecular mechanical stability, Nuclear mechanics, Nuclear pores, Nuclear transport, Rigidity sensing, Transcription regulation


Wolfenson, Haguy, Meacci, Giovanni, Liu, Shuaimin, Stachowiak, Matthew R., Iskratsch, Thomas, Ghassemi, Saba, Roca-Cusachs, Pere, Oshaughnessy, Ben, Hone, James, Sheetz, Michael P., (2016). Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices Nature Cell Biology 18, 33-42

Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied by local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of [sim]2.5[thinsp]nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of [alpha]-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.

Keywords: Cell adhesion, Mechanotransduction


Przybyla, L., Lakins, J. N., Sunyer, R., Trepat, X., Weaver, V. M., (2016). Monitoring developmental force distributions in reconstituted embryonic epithelia Methods 94, 101-113

The way cells are organized within a tissue dictates how they sense and respond to extracellular signals, as cues are received and interpreted based on expression and organization of receptors, downstream signaling proteins, and transcription factors. Part of this microenvironmental context is the result of forces acting on the cell, including forces from other cells or from the cellular substrate or basement membrane. However, measuring forces exerted on and by cells is difficult, particularly in an in vivo context, and interpreting how forces affect downstream cellular processes poses an even greater challenge. Here, we present a simple method for monitoring and analyzing forces generated from cell collectives. We demonstrate the ability to generate traction force data from human embryonic stem cells grown in large organized epithelial sheets to determine the magnitude and organization of cell-ECM and cell-cell forces within a self-renewing colony. We show that this method can be used to measure forces in a dynamic hESC system and demonstrate the ability to map intracolony protein localization to force organization.

Keywords: Epiblast, Human embryonic stem cells, Mechanotransduction, Monolayer stress microscopy, Self-organization, Traction force


Ghassemi, S., Meacci, G., Liu, S., Gondarenko, A. A., Mathur, A., Roca-Cusachs, P., Sheetz, M. P., Hone, J., (2012). Cells test substrate rigidity by local contractions on submicrometer pillars Proceedings of the National Academy of Sciences of the United States of America 109, (14), 5328-5333

Cell growth and differentiation are critically dependent upon matrix rigidity, yet many aspects of the cellular rigidity-sensing mechanism are not understood. Here, we analyze matrix forces after initial cell-matrix contact, when early rigidity-sensing events occur, using a series of elastomeric pillar arrays with dimensions extending to the submicron scale (2, 1, and 0.5 μm in diameter covering a range of stiffnesses). We observe that the cellular response is fundamentally different on micron-scale and submicron pillars. On 2-μm diameter pillars, adhesions form at the pillar periphery, forces are directed toward the center of the cell, and a constant maximum force is applied independent of stiffness. On 0.5-μm diameter pillars, adhesions form on the pillar tops, and local contractions between neighboring pillars are observed with a maximum displacement of ∼60 nm, independent of stiffness. Because mutants in rigidity sensing show no detectable displacement on 0.5-μm diameter pillars, there is a correlation between local contractions to 60 nm and rigidity sensing. Localization of myosin between submicron pillars demonstrates that submicron scale myosin filaments can cause these local contractions. Finally, submicron pillars can capture many details of cellular force generation that are missed on larger pillars and more closely mimic continuous surfaces.

Keywords: Cell mechanics, Mechanotransduction, Nanofabrication


Roca-Cusachs, P., Iskratsch, T., Sheetz, M. P., (2012). Finding the weakest link: exploring integrin-mediated mechanical molecular pathways Journal of Cell Science 125, (13), 3025-3038

From the extracellular matrix to the cytoskeleton, a network of molecular links connects cells to their environment. Molecules in this network transmit and detect mechanical forces, which subsequently determine cell behavior and fate. Here, we reconstruct the mechanical pathway followed by these forces. From matrix proteins to actin through integrins and adaptor proteins, we review how forces affect the lifetime of bonds and stretch or alter the conformation of proteins, and how these mechanical changes are converted into biochemical signals in mechanotransduction events. We evaluate which of the proteins in the network can participate in mechanotransduction and which are simply responsible for transmitting forces in a dynamic network. Besides their individual properties, we also analyze how the mechanical responses of a protein are determined by their serial connections from the matrix to actin, their parallel connections in integrin clusters and by the rate at which force is applied to them. All these define mechanical molecular pathways in cells, which are emerging as key regulators of cell function alongside better studied biochemical pathways.

Keywords: Cell adhesion, Cytoskeleton, Mechanotransduction


Zhou, E. H., Trepat, X., Park, C. Y., Lenormand, G., Oliver, M. N., Mijailovich, S. M., Hardin, C., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition Proceedings of the National Academy of Sciences of the United States of America 106, (26), 10632-10637

Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type.

Keywords: Compression, Cytoplasm, Cytoskeleton, Mechanotransduction, Stiffness


Gavara, N., Roca-Cusachs, P., Sunyer, R., Farre, R., Navajas, D., (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton Biophysical Journal 95, (1), 464-471

The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.

Keywords: Cell Line, Computer Simulation, Cytoskeleton/ physiology, Elasticity, Epithelial Cells/ physiology, Extracellular Matrix/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Stress, Mechanical


Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R., Navajas, D., (2008). Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation Biophysical Journal 94, (12), 4984-4995

Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.

Keywords: Cell Line, Cell Nucleus/ physiology, Cell Proliferation, Cell Size, Computer Simulation, Endothelial Cells/ cytology/ physiology, G1 Phase/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Statistics as Topic