Publications

by Keyword: Microfluidic


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Badiola-Mateos, M., Hervera, A., del Río, J. A., Samitier, J., (2018). Challenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit Frontiers in Bioengineering and Biotechnology 6, Article 194

Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.

Keywords: 3D-culture, Compartmentalized microfluidic culture systems (cμFCS), HiPSC, In-vitro models, Neuromuscular circuit


Urrea, L., Segura, Miriam, Masuda-Suzukake, M., Hervera, A., Pedraz, L., Aznar, J. M. G., Vila, M., Samitier, J., Torrents, E., Ferrer, Isidro, Gavín, R., Hagesawa, M., Del Río, J. A., (2018). Involvement of cellular prion protein in α-synuclein transport in neurons Molecular Neurobiology , 55, (3), 1847-1860

The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrPC-overexpressing mice.

Keywords: Amyloid spreading, Microfluidic devices, Prnp, Synuclein


Parra-Cabrera, C., Samitier, J., Homs-Corbera, A., (2016). Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection Biosensors and Bioelectronics , 77, 1192-1200

We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10. ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

Keywords: Adjustable sensing, Impedance measurements, In situ functionalization, Microfluidics, Prostate specific antigen, Self-assembled monolayers


Páez-Avilés, C., Juanola-Feliu, E., Punter-Villagrasa, J., Del Moral Zamora, B., Homs-Corbera, A., Colomer-Farrarons, J., Miribel-Català , P. L., Samitier, J., (2016). Combined dielectrophoresis and impedance systems for bacteria analysis in microfluidic on-chip platforms Sensors 16, (9), 1514

Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.

Keywords: Bacteria, Dielectrophoresis, Impedance, Microfluidics, On-chip


Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor IEEE Transactions on Nanobioscience , 14, (3), 298-304

In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.

Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles


Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics , 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)


Rigat, L., Bernabeu, M., Elizalde, A., de Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., del Portillo, H. A., Samitier, J., (2014). Human splenon-on-a-chip: Design and validation of a microfluidic model resembling the interstitial slits and the close/fast and open/slow microcirculations IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer (Seville, Spain) 41, 884-887

Splenomegaly, albeit variably, is a landmark of malaria infection. Due to technical and ethical constraints, however, the role of the spleen in malaria remains vastly unknown. The spleen is a complex three-dimensional branched vasculature exquisitely adapted to perform different functions containing closed/rapid and open/slow microcirculations, compartmentalized parenchyma (red pulp, white pulp and marginal zone), and sinusoidal structure forcing erythrocytes to squeeze through interstitial slits before reaching venous circulation. Taking into account these features, we have designed and developed a newfangled microfluidic device of a human splenon-on-a-chip (the minimal functional unit of the red pulp facilitating blood-filtering and destruction of malarial-infected red blood cells). Our starting point consisted in translating splenon physiology to the most similar microfluidic network, mimicking the hydrodynamic behavior of the organ, to evaluate and simulate its activities, mechanics and physiological responses and, therefore, enable us to study biological hypotheses. Different physiological features have been translated into engineering elements that can be combined to integrate a biomimetic microfluidic spleen model. The device is fabricated in polydimethylsiloxane (PDMS), a biocompatible polymer, irreversibly bonded to glass. Microfluidics analyses have confirmed that 90% of the blood circulates through a fast-flow compartment whereas the remaining 10% circulates through a slow compartment, equivalently to what has been observed in a real spleen. Moreover, erythrocytes and reticulocytes going through the slow-flow compartment squeeze at the end of it through 2μm physical constraints resembling interstitial slits to reach the closed/rapid circulation.

Keywords: Malaria, Microfluidics, Organ-on-a-chip, Spleen


Salerno, A., Levato, R., Mateos-Timoneda, M. A., Engel, E., Netti, P. A., Planell, J. A., (2013). Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacement process: Fabrication, characterization, and in vitro mesenchymal stem cells interaction study Journal of Biomedical Materials Research - Part A , 101A, (3), 720-732

The present study reports a novel approach for the design and fabrication of polylactic acid (PLA) microparticle-based scaffolds with microstructural properties suitable for bone and cartilage regeneration. Macroporous PLA scaffolds with controlled shape were fabricated by means of a semicontinuous process involving (1) microfluidic emulsification of a PLA/ethyl lactate solution (5% w/v) in a span 80/paraffin oil solution (3% v/v) followed by (2) particles coagulation/assembly in an acetone/water solution for the development of a continuous matrix. Porous scaffolds prepared from particles with monomodal or bimodal size distribution, overall porosity ranges from 93 to 96%, interparticles porosity from 41 to 54%, and static compression moduli from 0.3 to 1.4 MPa were manufactured by means of flow rate modulation of of the continuous phase during emulsion. The biological response of the scaffolds was assessed in vitro by using bone marrow-derived rat mesenchymal stem cells (MSCs). The results demonstrated the ability of the scaffolds to support the extensive and uniform three-dimensional adhesion, colonization, and proliferation of MSCs within the entire construct.

Keywords: Green solvent, Microfluidic, Microstructure, Stem cells, Scaffold


Esquivel, Juan Pablo , Castellarnau, Marc , Senn, Tobias , Löchel, Bernd , Samitier, Josep , Sabaté, Neus , (2012). Fuel cell-powered microfluidic platform for lab-on-a-chip applications Lab on a Chip , 12, (1), 74-79

The achievement of a higher degree of integration of components – especially micropumps and power sources – is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (mDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO2 from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4–18 mL min 1 while having an available power between 1–4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO2 pumping action to flow the required analytes through a particular microfluidic design.

Keywords: micro direct methanol fuel cell (mDMFC), Lab-on-a-chip (LOC), Microfluidic device


Comelles, J., Hortigüela, V., Samitier, J., Martinez, E., (2012). Versatile gradients of covalently bound proteins on microstructured substrates Langmuir , 28, (38), 13688-13697

In this work, we propose an easy method to produce highly tunable gradients of covalently bound proteins on topographically modified poly(methyl methacrylate). We used a rnicrofluidic approach to obtain linear gradients with high slope (0.5 pmol.cm(-2).mm(-1)), relevant at the single-cell level. These protein gradients were characterized using fluorescence microscopy and surface plasmon resonance. Both experimental results and theoretical modeling on the protein gradients generated have proved them to be highly reproducible, stable up to 7 days, and easily tunable. This method enables formation of versatile cell culture platforms combining both complex biochemical and physical cues in an attempt to approach in vitro cell culture methods to in vivo cellular microenvironments.

Keywords: Cell-migration, Microfluidic channel, Surface, Streptavidin, Molecules, Topography, Mechanisms, Generation, Responses, Guidance


Ivon Rodriguez-Villarreal, Angeles, Tarn, Mark D., Madden, Leigh A., Lutz, Julia B., Greenman, John, Samitier, Josep, Pamme, Nicole, (2011). Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup Lab on a Chip , 11, (7), 1240-1248

The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells.

Keywords: Feeble magnetic substances, On-chip, Blood-cells, Microfluidic device, Separation, Field, Levitation, Magnetophoresis, Fractionation, Nanoparticles


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


Rodriguez-Trujillo, R., Castillo-Fernandez, O., Garrido, M., Arundell, M., Valencia, A., Gomila, G., (2008). High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture Biosensors and Bioelectronics , 24, (2), 290-296

This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device. High-speed counting of 20 mu m polystyrene particles and 5 mu m yeast cells with a rate of up to 1000 particles/s has been demonstrated. Two-dimensional focusing conditions have been used in devices with physical cross-sectional areas of 180 mu m x 65 mu m and 100 mu m x 43 mu m, respectively, in which particles resulted undetectable in the absence of focusing. The 2D-focusing conditions have provided, in addition, increased detection sensitivity by a factor of 1.6 as compared to 1 D-focusing conditions.

Keywords: Impedance, Chip, Microfluidics


Rodriguez-Trujillo, R., Castillo-Fernandez, O., Arundell, M., Samitier, J., Gomila, G., (2008). Yeast cells detection in a very fast and highly versatile microfabricated cytometer MicroTAS 2008 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences , Chemical and Biological Microsystems Society (San Diego, USA) , 1888-1890

A novel microfluidic chip able to detect a wide range of different cell sizes at very high rates is reported. The device uses two-dimensional hydrodynamic focusing [1] of the sample (conducting) flow by three non-conducting flows and high-speed differential impedance detection electronics. High-speed counting of 15μm polystyrene particles and 5μm yeast cells with a rate of up to 1000 particles/s has been demonstrated. Using of two-dimensional focusing effect turn out to be essential in a device with very large cross-sectional area (100x43 μm2) in which particles result undetectable in the absence of focusing.

Keywords: Coulter-counter, Impedance, Microfluidics, Polydimethylsiloxane