by Keyword: Mind

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Verschure, P., (2018). The architecture of mind and brain Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 338-345

The components of a Living Machine must be integrated into a functioning whole, which requires a detailed understanding of the architecture of living machines. This chapter starts with a conceptual and historical analysis which from Plato brings us to nineteenth-century neuroscience and early concepts of the layered structure of nervous systems. These concepts were further captured in the cognitive behaviorism of Tolman and came to full fruition in the cognitive revolution of the second half of the twentieth century. Verschure subsequently describes the most relevant proposals of cognitive architectures followed by an overview of the few proposals stemming from modern neuroscience on the architecture of the brain. Subsequently, we will look at contemporary contenders that mediate between cognitive and brain architecture. An important challenge to any model of cognitive architectures is how to benchmark it. Verschure proposes the Unified Theories of Embodied Minds (UTEM) benchmark which advances from Newell’s classic Unified Theories of Cognition benchmark.

Keywords: Architecture, Mind, Brain, Organization, System, Virtualization, Abstraction layers

Freire, I. T., Arsiwalla, X. D., Puigbò, J. Y., Verschure, P., (2018). Limits of multi-agent predictive models in the formation of social conventions Frontiers in Artificial Intelligence and Applications (ed. Falomir, Z., Gibert, K., Plaza, E.), IOS Press (Amsterdam, The Netherlands) Volume 308: Artificial Intelligence Research and Development, 297-301

A major challenge in cognitive science and AI is to understand how intelligent agents might be able to predict mental states of other agents during complex social interactions. What are the computational principles of such a Theory of Mind (ToM)? In previous work, we have investigated hypotheses of how the human brain might realize a ToM of other agents in a multi-agent social scenario. In particular, we have proposed control-based cognitive architectures to predict the model of other agents in a game-theoretic task (Battle of the Exes). Our multi-layer architecture implements top-down predictions from adaptive to reactive layers of control and bottom-up error feedback from reactive to adaptive layers. We tested cooperative and competitive strategies among different multi-agent models, demonstrating that while pure RL leads to reasonable efficiency and fairness in social interactions, there are other architectures that can perform better in specific circumstances. However, we found that even the best predictive models fall short of human data in terms of stability of social convention formation. In order to explain this gap between humans and predictive AI agents, in this work we propose introducing the notion of trust in the form of mutual agreements between agents that might enhance stability in the formation of conventions such as turn-taking.

Keywords: Cognitive Architectures, Game Theory, Multi-Agent Models, Reinforcement Learning, Theory of Mind