Publications

by Keyword: Monitoring


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Rafols-de-Urquia, M., Estrada, L., Estevez-Piorno, J., Sarlabous, L., Jane, R., Torres, A., (2019). Evaluation of a wearable device to determine cardiorespiratory parameters from surface diaphragm electromyography IEEE Journal of Biomedical and Health Informatics Early Access

The use of wearable devices in clinical routines could reduce healthcare costs and improve the quality of assessment in patients with chronic respiratory diseases. The purpose of this study is to evaluate the capacity of a Shimmer3 wearable device to extract reliable cardiorespiratory parameters from surface diaphragm electromyography (EMGdi). Twenty healthy volunteers underwent an incremental load respiratory test whilst EMGdi was recorded with a Shimmer3 wearable device (EMGdiW). Simultaneously, a second EMGdi (EMGdiL), inspiratory mouth pressure (Pmouth) and lead-I electrocardiogram (ECG) were recorded via a standard wired laboratory acquisition system. Different cardiorespiratory parameters were extracted from both EMGdiW and EMGdiL signals: heart rate, respiratory rate, respiratory muscle activity and mean frequency of EMGdi signals. Alongside these, similar parameters were also extracted from reference signals (Pmouth and ECG). High correlations were found between the data extracted from the EMGdiW and the reference signal data: heart rate (R = 0.947), respiratory rate (R = 0.940), respiratory muscle activity (R = 0.877), and mean frequency (R = 0.895). Moreover, similar increments in EMGdiW and EMGdiL activity were observed when Pmouth was raised, enabling the study of respiratory muscle activation. In summary, the Shimmer3 device is a promising and cost-effective solution for the ambulatory monitoring of respiratory muscle function in chronic respiratory diseases. IEEE

Keywords: Cardiorespiratory monitoring, Chronic respiratory diseases, Fixed sample entropy, Non-invasive respiratory monitoring, Surface diaphragm electromyography, Wearable wireless device


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2017). Influence of parameter selection in fixed sample entropy of surface diaphragm electromyography for estimating respiratory activity Entropy 19, (9), 460

Fixed sample entropy (fSampEn) is a robust technique that allows the evaluation of inspiratory effort in diaphragm electromyography (EMGdi) signals, and has potential utility in sleep studies. To appropriately estimate respiratory effort, fSampEn requires the adjustment of several parameters. The aims of the present study were to evaluate the influence of the embedding dimension m, the tolerance value r, the size of the moving window, and the sampling frequency, and to establish recommendations for estimating the respiratory activity when using the fSampEn on surface EMGdi recorded for different inspiratory efforts. Values of m equal to 1 and r ranging from 0.1 to 0.64, and m equal to 2 and r ranging from 0.13 to 0.45, were found to be suitable for evaluating respiratory activity. fSampEn was less affected by window size than classical amplitude parameters. Finally, variations in sampling frequency could influence fSampEn results. In conclusion, the findings suggest the potential utility of fSampEn for estimating muscle respiratory effort in further sleep studies.

Keywords: Fixed sample entropy (fSampEn), Non-invasive respiratory monitoring, Respiratory activity, Respiratory effort, Surface diaphragm electromyography


Castillo, Y., Blanco, D., Whitney, J., Mersky, B., Jané, R., (2017). Characterization of a tooth microphone coupled to an oral appliance device: A new system for monitoring OSA patients Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1543-1546

Obstructive sleep apnea (OSA) is a highly prevalent chronic disease, especially in elderly and obese populations. Despite constituting a serious health, social and economic problem, most patients remain undiagnosed and untreated due to limitations in current equipment. In this work, we propose a novel method to diagnose OSA and monitor therapy adherence and effectiveness at home in a non-invasive and inexpensive way: combining acoustic analysis of breathing and snoring sounds with oral appliance therapy (OA). Audiodontics has introduced a new sensor, a tooth microphone coupled to an OA device, which is the main pillar of this system. The objective of this work is to characterize the response of this sensor, comparing it with a commercial tracheal microphone (Biopac transducer). Signals containing OSA-related sounds were acquired simultaneously with the two microphones for that purpose. They were processed and analyzed in time, frequency and time-frequency domains, in a custom MATLAB interface. We carried out a single-event approach focused on breaths, snores and apnea episodes. We found that the quality of the signals obtained by both microphones was quite similar, although the tooth microphone spectrum concentrated more energy at the high-frequency band. This opens a new field of study about high-frequency components of snores and breathing sounds. These characteristics, together with its intraoral position, wireless option and combination with customizable OAs, give the tooth microphone a great potential to reduce the impact of sleep disorders, by enabling prompt detection and continuous monitoring of patients at home.

Keywords: Microphones, Teeth, Sleep apnea, Time-frequency analysis, Signal to noise ratio, Monitoring, Acoustics


Camara, M. A., Castillo, Y., Blanco-Almazan, D., Estrada, L., Jane, R., (2017). MHealth tools for monitoring Obstructive Sleep Apnea patients at home: Proof-of-concept Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1555-1558

Obstructive Sleep Apnea (OSA) is a sleep disorder that affects mainly the adult and elderly population. Due to the high percentage of patients who remain undiagnosed and untreated because of limitations of current diagnosis methods, the management of OSA is an important social, scientific and economic problem that will be difficult to be assumed by health systems. On the other hand, smartphone platforms (mHealth systems) are being considered as an innovative solution, thanks to the integration of the essential sensors to obtain clinically relevant parameters in the same device or in combination with wireless wearable devices.

Keywords: Sleep apnea, Microphones, Monitoring, Sensors, Accelerometers, Biomedical monitoring, Band-pass filters


Huerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N.F., Rodríguez-Lujan, I., (2016). Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring Chemometrics and Intelligent Laboratory Systems , 157, 169-176

A method for online decorrelation of chemical sensor signals from the effects of environmental humidity and temperature variations is proposed. The goal is to improve the accuracy of electronic nose measurements for continuous monitoring by processing data from simultaneous readings of environmental humidity and temperature. The electronic nose setup built for this study included eight metal-oxide sensors, temperature and humidity sensors with a wireless communication link to external computer. This wireless electronic nose was used to monitor the air for two years in the residence of one of the authors and it collected data continuously during 537 days with a sampling rate of 1 sample per second. To estimate the effects of variations in air humidity and temperature on the chemical sensors' signals, we used a standard energy band model for an n-type metal-oxide (MOX) gas sensor. The main assumption of the model is that variations in sensor conductivity can be expressed as a nonlinear function of changes in the semiconductor energy bands in the presence of external humidity and temperature variations. Fitting this model to the collected data, we confirmed that the most statistically significant factors are humidity changes and correlated changes of temperature and humidity. This simple model achieves excellent accuracy with a coefficient of determination R2 close to 1. To show how the humidity–temperature correction model works for gas discrimination, we constructed a model for online discrimination among banana, wine and baseline response. This shows that pattern recognition algorithms improve performance and reliability by including the filtered signal of the chemical sensors.

Keywords: Electronic nose, Chemical sensors, Humidity, Temperature, Decorrelation, Wireless e-nose, MOX sensors, Energy band model, Home monitoring


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2016). Evaluating respiratory muscle activity using a wireless sensor platform Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 5769-5772

Wireless sensors are an emerging technology that allows to assist physicians in the monitoring of patients health status. This approach can be used for the non-invasive recording of the electrical respiratory muscle activity of the diaphragm (EMGdi). In this work, we acquired the EMGdi signal of a healthy subject performing an inspiratory load test. To this end, the EMGdi activity was captured from a single channel of electromyography using a wireless platform which was compared with the EMGdi and the inspiratory mouth pressure (Pmouth) recorded with a conventional lab equipment. From the EMGdi signal we were able to evaluate the neural respiratory drive, a biomarker used for assessing the respiratory muscle function. In addition, we evaluated the breathing movement and the cardiac activity, estimating two cardio-respiratory parameters: the respiratory rate and the heart rate. The correlation between the two EMGdi signals and the Pmouth improved with increasing the respiratory load (Pearson's correlation coefficient ranges from 0.33 to 0.85). The neural respiratory drive estimated from both EMGdi signals showed a positive trend with an increase of the inspiratory load and being higher in the conventional EMGdi recording. The respiratory rate comparison between measurements revealed similar values of around 16 breaths per minute. The heart rate comparison showed a root mean error of less than 0.2 beats per minute which increased when incrementing the inspiratory load. In summary, this preliminary work explores the use of wireless devices to record the muscle respiratory activity to derive several physiological parameters. Its use can be an alternative to conventional measuring systems with the advantage of being portable, lightweight, flexible and operating at low energy. This technology can be attractive for medical staff and may have a positive impact in the way healthcare is being delivered.

Keywords: Biomedical monitoring, Electrodes, Medical services, Monitoring, Muscles, Wireless communication, Wireless sensor networks


Rajasekaran, V., Aranda, J., Casals, A., (2015). Compliant gait assistance triggered by user intention Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3885-3888

An automatic gait initialization strategy based on user intention sensing in the context of rehabilitation with a lower-limb wearable robot is proposed and evaluated. The proposed strategy involves monitoring the human-orthosis interaction torques and initial position deviation to determine the gait initiation instant and to modify orthosis operation for gait assistance, when needed. During gait, the compliant control algorithm relies on the adaptation of the joints' stiffness in function of their interaction torques and their deviation from the desired trajectories, while maintaining the dynamic stability. As a reference input, the average of a set of recorded gaits obtained from healthy subjects is used. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

Keywords: Biomedical monitoring, Exoskeletons, Joints, Knee, Legged locomotion, Trajectory, Exoskeleton, adaptive control, gait assistance, gait initiation, rehabilitation, wearable robot


Palleja, T., Balsa, R., Tresanchez, M., Moreno, J., Teixido, M., Font, D., Marco, S., Pomareda, V., Palacin, J., (2014). Corridor gas-leak localization using a mobile Robot with a photo ionization detector sensor Sensor Letters , 12, (6-7), 974-977

The use of an autonomous mobile robot to locate gas-leaks and air quality monitoring in indoor environments are promising tasks that will avoid risky human operations. However, these are challenging tasks due to the chaotic gas profile propagation originated by uncontrolled air flows. This paper proposes the localization of an acetone gas-leak in a 44 m-length indoor corridor with a mobile robot equipped with a PID sensor. This paper assesses the influence of the mobile robot velocity and the relative height of the PID sensor in the profile of the measurements. The results show weak influence of the robot velocity and strong influence of the relative height of the PID sensor. An estimate of the gas-leak location is also performed by computing the center of mass of the highest gas concentrations.

Keywords: Gas source detection, LIDAR sensor, Mobile robot, PID sensor, SLAM, Acetone, Air quality, Gases, Indoor air pollution, Mobile robots, Robots, Air quality monitoring, Autonomous Mobile Robot, Gas sources, Indoor environment, Leak localization, LIDAR sensors, Profile propagation, SLAM, Ionization of gases


Bennetts, Victor, Schaffernicht, Erik, Pomareda, Victor, Lilienthal, Achim, Marco, Santiago, Trincavelli, Marco, (2014). Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds Sensors 14, (9), 17331-17352

In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

Keywords: Environmental monitoring, Gas discrimination, Gas distribution mapping, Service robots, Open sampling systems, PID, Metal oxide sensors


Jané, R., (2014). Engineering Sleep Disorders: From classical CPAP devices toward new intelligent adaptive ventilatory therapy IEEE Pulse , 5, (5), 29-32

Among the most common sleep disorders are those related to disruptions in airflow (apnea) or reductions in the breath amplitude (hypopnea) with or without obstruction of the upper airway (UA). One of the most important sleep disorders is obstructive sleep apnea (OSA). This sleep-disordered breathing, quantified by the apnea-hypopnea index (AHI), can produce a significant reduction of oxygen saturation and an abnormal elevation of carbon dioxide levels in the blood. Apnea and hypopnea episodes are associated with arousals and sleep fragmentation during the night and compensatory response of the autonomic nervous system.

Keywords: Biomedical engineering, Biomedical measurements, Biomedical monitoring, Breathing disorders, Medical conditions, Medical treatment, Sleep, Sleep apnea


Gorostiza, Pau, Arosio, Daniele, Bregestovski, Piotr, (2013). Molecular probes and switches for functional analysis of receptors, ion channels and synaptic networks Frontiers in Molecular Neuroscience 6, (Article 48), 1-2

Morgenstern, C., Randerath, W. J., Schwaibold, M., Bolz, A., Jané, R., (2013). Feasibility of noninvasive single-channel automated differentiation of obstructive and central hypopneas with nasal airflow Respiration , 85, (4), 312-318

Background: The identification of obstructive and central hypopneas is considered challenging in clinical practice. Presently, obstructive and central hypopneas are usually not differentiated or scores lack reliability due to the technical limitations of standard polysomnography. Esophageal pressure measurement is the gold-standard for identifying these events but its invasiveness deters its usage in daily practice. Objectives: To determine the feasibility and efficacy of an automatic noninvasive analysis method for the differentiation of obstructive and central hypopneas based solely on a single-channel nasal airflow signal. The obtained results are compared with gold-standard esophageal pressure scores. Methods: A total of 41 patients underwent full night polysomnography with systematic esophageal pressure recording. Two experts in sleep medicine independently differentiated hypopneas with the gold-standard esophageal pressure signal. Features were automatically extracted from the nasal airflow signal of each annotated hypopnea to train and test the automatic analysis method. Interscorer agreement between automatic and visual scorers was measured with Cohen's kappa statistic (κ). Results: A total of 1,237 hypopneas were visually differentiated. The automatic analysis achieved an interscorer agreement of κ = 0.37 and an accuracy of 69% for scorer A, κ = 0.40 and 70% for scorer B and κ = 0.41 and 71% for the agreed scores of scorers A and B. Conclusions: The promising results obtained in this pilot study demonstrate the feasibility of noninvasive single-channel hypopnea differentiation. Further development of this method may help improving initial diagnosis with home screening devices and offering a means of therapy selection and/or control.

Keywords: Central sleep hypopnea, Esophageal pressure, Home monitoring, Obstructive sleep hypopnea, Sleep disordered breathing


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Giraldo, B.F., Gaspar, B.W., Caminal, P., Benito, S., (2012). Analysis of roots in ARMA model for the classification of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 698-701

One objective of mechanical ventilation is the recovery of spontaneous breathing as soon as possible. Remove the mechanical ventilation is sometimes more difficult that maintain it. This paper proposes the study of respiratory flow signal of patients on weaning trials process by autoregressive moving average model (ARMA), through the location of poles and zeros of the model. A total of 151 patients under extubation process (T-tube test) were analyzed: 91 patients with successful weaning (GS), 39 patients that failed to maintain spontaneous breathing and were reconnected (GF), and 21 patients extubated after the test but before 48 hours were reintubated (GR). The optimal model was obtained with order 8, and statistical significant differences were obtained considering the values of angles of the first four poles and the first zero. The best classification was obtained between GF and GR, with an accuracy of 75.3% on the mean value of the angle of the first pole.

Keywords: Analytical models, Biological system modeling, Computational modeling, Estimation, Hospitals, Poles and zeros, Ventilation, Autoregressive moving average processes, Patient care, Patient monitoring, Pneumodynamics, Poles and zeros, Ventilation, ARMA model, T-tube test, Autoregressive moving average model, Extubation process, Mechanical ventilation, Optimal model, Patient classification, Respiratory flow signal, Roots, Spontaneous breathing, Weaning trials


Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291

Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.

Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring