Publications

by Keyword: Morbidity


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Farre, R., Montserrat, J. M., Navajas, D., (2008). Morbidity due to obstructive sleep apnea: insights from animal models Current Opinion in Pulmonary Medicine , 14, (6), 530-536

PURPOSE OF REVIEW: Obstructive sleep apnea (OSA) is a prevalent disorder with clinically well known mid-term and long-term consequences. It is difficult, however, to investigate the mechanisms causing morbidity in OSA from human studies, owing to confounding factors in patients. Animal research is useful to analyze the various injurious stimuli--intermittent hypoxia/hypercapnia, mechanical stress and sleep disruption--that potentially cause OSA morbidity. This review is focused on the most recent advances in our understanding of the consequences of OSA, achieved as a result of animal models. RECENT FINDINGS: Animal research has improved our knowledge of various aspects of the cardiovascular consequences of OSA: myocardial damage, left ventricular dysfunction, vasoconstriction, hypertension and atherosclerosis. The systemic and metabolic consequences of OSA--inflammation, insulin resistance, alterations in lipid metabolism and hepatic morbidity--have also been investigated with animal models. Our understanding of the mechanisms involved in the neurocognitive consequences of OSA--neuronal and brain alterations and cognitive dysfunctions--has also been improved through animal research. Moreover, animal models have recently been used to investigate the mechanisms of upper airway inflammation and dysfunction. SUMMARY: The simple experimental models used to investigate OSA morbidity are useful for investigating isolated mechanisms. However, more complex and realistic models incorporating the various injurious challenges characterizing OSA are required to more precisely translate the results of animal research to patients and to design potentially preventive and therapeutic strategies.

Keywords: Animal model, Morbidity, Sleep apnea, Translational research